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A B S T R A C T   

Renewable energy sources such as wind power are increasing their share of the world energy matrix. In Brazil, 
the regulator promotes reverse bid auctions where the winner agrees to begin production a number of years 
ahead under a long-term contract. If a wind farm project chooses to anticipate construction, it can sell its energy 
in the short-term market but becomes subject to electricity price volatility. In order to create incentives for early 
investment, we propose that wind farm investors can hedge electricity price risk by simultaneously investing in a 
cryptocurrency mining facility that uses electricity as input to produce newly minted Bitcoins. As electricity and 
Bitcoin prices are uncorrelated, the ability to switch between these outputs allows the wind farm to maximize 
revenues and minimize losses. We develop a numerical application under the real options approach to determine 
the financial impact of the investment in a Bitcoin facility for the wind energy producer that will allow it to 
optimally switch outputs depending on the relative future prices of electricity and Bitcoins. The short-term 
energy price and Bitcoin price/mining-difficulty ratio are modeled as distinct stochastic diffusion processes. 
The results indicate that the option to switch outputs significantly increases the generator’s revenue while 
simultaneously decreasing the risk of anticipating the construction. These findings, which can also be applied to 
other renewable energy sources, may be of interest to both the energy generator as well as the system regulator 
as it creates an incentive for early investment in sustainable and renewable energy sources.   

1. Introduction 

The shift towards a cleaner energy matrix is a worldwide trend, as 
many countries have created incentives to limit carbon emissions from 
fossil fuel combustion and increase energy production from renewable 
and sustainable sources of energy [1]. Along with technological ad-
vances that have lowered the cost of new power plants, this effort has 
resulted in significant growth in this area. On the other hand, renewable 
energy production presents many risks. As it relies on non-controllable 
perennial natural resources such as wind or sunlight rather than on a 
finite stock of fuel, its energy generation is intermittent. This fact ex-
poses the producer to volume risk, as it may not be able to fulfill its 
energy sales contracts in case of a production shortfall. In addition, 
future electricity prices are uncertain, which also subjects the producer 
to price risk. 

Brazil has one of the cleanest energy matrices in the world, where 
renewables accounted for 45.3% of the total consumption in 2018, 
compared to the world average of 13.7%, and 9.7% for the OECD na-
tions. The share of renewables in electricity generation in the country is 

even higher and accounts for 83.3% of the total, compared to 24.0% and 
23.8% respectively for the world and OECD [2]. Over three-quarters of 
the country’s electric power supply comes from hydroelectric dams, 
making it the third country in the world in this energy source behind 
only China and Canada. Although new hydropower capacity has come 
online with the Belo Monte dam inauguration, the construction of large 
hydroelectric power plants can impact environmental ecosystems [3]. 

Meanwhile, wind energy generation in Brazil has grown significantly 
in the past decade, from only 663 GWh in 2007 to 48,475 GWh in 2018. 
This represents a growth of more than 7000%, making it the country’s 
second electrical energy source after hydropower, and Brazil, the 8th 
country worldwide in wind energy capacity. The Brazilian Electricity 
Regulatory Agency (ANEEL) is responsible for fostering the develop-
ment of this increase by promoting reverse bid auctions in the regulated 
market where the winner agrees to begin energy production in a set 
number of years. Several auctions have been held since 2011, which 
resulted in the celebration of 479 renewable energy projects, of which 
203 were wind farms, 121 were photovoltaic power plants, and 155 
were hydropower plants [4]. This increase in new renewable sources is 
due to both the favorable geographical and climate conditions that 
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prevail in Brazil and ANEEL’s policy of fostering renewables develop-
ment. The bid auctions for reserve energy dedicated exclusively to re-
newables have met with significant success, as can be observed in the 
growth of renewables capacity. 

Nonetheless, renewable energy power generation investments still 
involve significant risks for investors and require specific policies, 
government incentives, and risk reduction mechanisms. Due to these 
risks, the amount of units that fail to complete in time has been signif-
icant. According to ANEEL [4], as of November 2019, 195 of these units, 
or 41% of the total, were behind schedule. Considering only wind and 
solar energy plants, the number of projects behind schedule was 68 out 
of 324, or 21% of the total. Work had still not begun in 219 of these 
projects, and 37 had their construction work suspended, representing 
712.8 MW of capacity at risk, as shown in the Appendix. These potential 
delays can create problems for the system regulator if the expected 
volume of energy generation fails to come online as planned. 

This article proposes a hedging mechanism that allows a wind farm 
venture to reduce risk by simultaneously investing in a Bitcoin (BTC) 
mining facility, which allows the firm to optimally switch outputs be-
tween electricity and Bitcoins depending on the relative values of each 
of these. This creates an incentive for early investment in the wind farm 
since anticipating production allows the firm to generate earlier and less 
risky cash flows. If electricity prices are high, the wind farm can sell its 
energy in the spot market; otherwise, the firm can switch to Bitcoin 
mining. This also reduces the risk for the system regulator, as these 
projects will be more likely to begin providing energy to the regulated 
long term on the contracted date, as they will come onstream in the free 
market years earlier. 

The logistics of producing and selling digital currencies is simple and 
limited to the acquisition of computational hardware, also known as 
cryptocurrency mining hardware, and to the supply of the electric 
power, network connection, and refrigeration required for the opera-
tion. Electricity and Bitcoin prices (BTC$) follow distinct and uncorre-
lated stochastic processes, which enhances the value of this option to 
switch outputs. The value of this switch option is a function of the dif-
ference in the value of the Bitcoins that are mined and the cost of the 
energy required to do so, which we denominate the bit-spread. When-
ever the bit-spread is positive, it is optimal to switch from energy sales in 
the spot market to Bitcoin mining. It is assumed that the wind farm will 
immediately sell the newly minted bitcoins in the market through a 
cryptocurrency exchange without incurring storage risk or currency 
volatility. It is also assumed that the exchange is trustworthy and secure 
communication and crypto-key management technologies are adopted. 

The objective of this paper is to determine the impact of this switch 
option on the risk and return of the project for the wind farm investor. As 
this option will require a simultaneous investment in a Bitcoin mining 
facility, the returns must be sufficient to compensate for these additional 

costs. Furthermore, construction anticipation will reduce the risk for the 
system regulator of the power plant not coming online as expected. 

In order to achieve this objective, a formal and original model of the 
price and technology dynamics of Bitcoin mining is developed, which 
involves an energy-intensive computational process. The option to 
switch the outputs of a portfolio comprised of a wind farm and a Bitcoin 
mining facility is modeled under the real options approach by taking 
into account the stochastic dynamics of both energy prices and the ratio 
between Bitcoin prices and network difficulty. In order to illustrate the 
use of the model, a numerical application is made to the case of a typical 
wind farm in the Brazilian Northeast region. Our results suggest that this 
strategy may allow a wind farm to increase value and reduce risk 
significantly while creating incentives for early investment in the 
project. 

This article is organized as follows. The next section provides a re-
view of the literature on real options and renewable energy and an 
overview of wind energy generation in Brazil and cryptocurrency min-
ing. In section 3, the stochastic modeling of short-term electricity prices 
in Brazil and a composite variable of the price of Bitcoin divided by the 
network mining difficulty is discussed. In section 4, the value of the 
option to switch outputs between short-term electricity sales and Bitcoin 
mining is determined, and in section 5, the results are present. Finally, 
we conclude. 

2. Literature review and background 

2.1. Real option analysis 

Real Option theory derives from the work of initially developed by 
Black and Scholes [5] and Merton [6] for financial derivatives pricing as 
applied to real, rather than financial assets. While real assets are usually 
priced using discounted cash flow methods, this approach fails to cap-
ture the value of flexible real-world decisions, such as the option to 
anticipate, defer or abandon the construction of a new plant, to expand 
production, or to switch inputs or outputs. Tourinho [7], Myers and 
Majd [8], Brennan and Schwartz [9], McDonald and Siegel [10], and 
others further developed the basic concepts of this approach and applied 
it to different types of managerial flexibility. Pindyck [11], Dixit [12], 
Trigeorgis [13], and Dixit and Pindyck [14] also showed that real op-
tions could be useful to evaluate a project under the presence of un-
certainty and flexibility for the managers to take action on the changes 
presented to them. 

Concerning the valuation of renewable energy projects, there is an 
extensive literature on the use of the real options approach to this field. 
Dias et al. [15] analyze a sugar and ethanol-producing plant in Brazil 
which has both the option to expand and to add a cogeneration unit to 
allow the sale of surplus energy generated by burning sugarcane 
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bagasse, where the existence of the second option is conditional to the 
exercise of the first option. Brandão, Penedo, and Bastian-Pinto [16] 
discuss the value of the input switching options embedded in the pro-
duction of biodiesel fuel and show that the choice of model and pa-
rameters has a significant impact on the results of the valuation. In a 
paper more closely related to ours, Dalbem, Brandão, and Gomes [17] 
analyze the option to anticipate the construction of a wind farm plant in 
order to sell energy in the spot market. They conclude that due to the 
low price that prevailed at the time, no value was created, which made it 
unlikely that this option would be exercised. Oliveira et al. [18] model 
energy prices with mean reversion and jumps using Monte Carlo 
Simulation for a biomass cogeneration project. For a more detailed 
discussion of the application of real options to renewable energy pro-
jects, we refer the reader to Kozlova [19] for a comprehensive review of 
the field, as well as a brief review of real options literature. 

2.2. Wind energy in Brazil 

Brazil’s geography and regulatory space are considered favorable for 
wind farm construction and development. The country has a large wind 
power production capacity, and due to the relatively short time to build 
a wind farm when compared to hydropower plants, those are being 
favored by the electrical energy regulatory agencies as well as for 
environmental and sustainability issues. The regulatory environment of 
the Brazilian Electricity System involves a wholesale market with auc-
tions between producers and distributors and a free market between 
producers and consumers with demand greater than 3 MW. In 2004, the 
auction system in the regulated environment was created, followed by a 
mechanism to contract reserve power in 2008. Since then, auctions for 
the reserve mechanism have been mostly for renewable energy. 

ANEEL regulates the future supply of energy using long-term energy 
supply auctions for different sources of electricity generation. The 
parties interested in developing the power plant enter into a reverse 
auction for the tariff or rate they wish to receive for the energy produced 
for the duration of the concession. The winning party must then provide 
the contracted amount of energy at a stipulated future date, usually a 
few years ahead. The volume of energy to be provided at the winning 
rate is called the assured capacity of the site and typically corresponds to 
50% of the total capacity of the site to be constructed. 

Since the winner of the auction has a set number of years to begin 
delivery of the energy, if the power plant is built ahead of time, it can sell 
its energy in the free market until then. The delivery start time varies 
between three (A-3) and six (A-6) years, depending on the needs of the 
regulator. If the party wins an A-6 contract, it will have six years to build 
the site, after which it must provide the assured capacity for the duration 
of the concession. Assuming a two-year construction period for a wind 
farm, the firm must commence building at the end of year four at the 
most, as shown in Fig. 1. 

On the other hand, if the firm chooses to commence building 
immediately, it will have four years of energy generation that can be 
sold in the short-term market. The electricity spot price in Brazil is 
known as the PLD (Price for Liquidation of Differences), which is a 
weekly energy settlement price determined by the Brazilian Electric 
Energy Clearing Chamber (CCEE). In normal market conditions, the PLD 
should be in equilibrium at a low value, and direct energy sales to the 
short-term market may not provide enough incentive to anticipate the 
construction. Nonetheless, in the past decades, the electricity spot prices 
in Brazil have shown significant volatility, with its average value 

increasing markedly. For the regulator, anticipation of construction 
guarantees that the required energy will be available in the future as 
expected and eliminates the risk of eventual delays or project cancel-
ation. In this article, we suggest that adding an energy-intensive venture 
to the site, such as a cryptocurrency mining facility, provides the wind 
farm protection against low PLD prices, increases the value of the 
project, and encourages early investment. 

2.3. Cryptocurrencies 

Since the advent of modern digital communications, there has been a 
search for a currency that could incorporate the best characteristics of 
this technology. However, the ease by which documents could be 
repeatedly copied in this medium was a difficult barrier to overcome. 
The solution to this problem began with a method of validation named 
Hashcash developed by Back [20], which adopted an algorithm that 
associated the emission of digital coins with a computational-intensive 
mechanism known as proof-of-work. This mechanism prevented coins 
produced in this way from being copied without applying the same 
computational effort again. In 2004 a method to reutilize those coins in 
subsequent transactions was developed by Finney [21], which allowed 
digital coins to hold value after being transacted. Though both tech-
nologies were revolutionary, they were not enough to create 
general-purpose digital cash as intended. 

The breakthrough in electronic cash came with the publication of the 
Bitcoin whitepaper in 2008 by an anonymous group under the pseu-
donym of Satoshi Nakamoto [22]. The paper associated Back’s and 
Finney’s technology with a distributed database storage developed in 
1991 that would later become known as blockchain [23]. 

The effort to write data to Bitcoin’s blockchain is rewarded by 
transaction fees paid by users and by the emission of newly minted 
digital coins. Anyone can attempt to write a block of valid transactions 
on the distributed ledger, but the network only accepts it if it is the first 
to generate a digital signature known as hash. The effort of generating a 
hash is an energy-intensive process called cryptocurrency mining, which 
in the case of the Bitcoin network, requires the use of custom-built 
computational hardware known as ASICs (Application Specific Inte-
grated Circuits). The greater the mining capacity, or hashrate, held by a 
participant, the greater the chances of being the first to find the correct 
digital signature for the next block of transactions. 

The current proof-of-work infrastructure relies heavily on electric 
energy [24]. Energy consumption by the Bitcoin network is significant, 
and as of January 2020 was 75 TWh, which is equivalent to the annual 
energy consumption of Chile [25]. Similar to the heat-rate of a gas 
turbine, we define the bit-rate as a measure of the efficiency of the 
Bitcoin mining facility regarding its electric energy consumption. The 
bit-rate is a function of the network difficulty and the mining hardware 
used, the specification of which is publicly available, and is expressed in 
the amount of electrical energy required to produce one Bitcoin or 
MWh/BTC. The technological evolution of mining hardware is quick, 
and mining equipment is usually assumed obsolete within two years as 
the bit-rate increases to infinity. 

Similar to the spark-spread [26], the bit-spread represents the dollar 
value of the Bitcoin mining operation, which is a function of the bit-rate 
and the relative values of Bitcoin and Electricity prices. Haliplii et al. 
[27] explore the profitability of Bitcoin mining using a real options 
framework. The authors, however, assume that electricity prices remain 
constant, which may skew some of the results. 

Works that discuss the use of cryptocurrency mining as a hedging 
mechanism for renewable energy generation are scarce in the literature. 
In a paper closest to ours, Shan & Sun [28] analyze the benefits the 
California Independent System Operator (CAISO) would accrue if the 
renewable energy production of California curtailed in 2018 was used to 
mine Bitcoins. Using historical data, they conclude that this value could 
be as high as $48.1 million, depending on the type of equipment. Our 
paper differs from Shan & Sun [28] as we model Bitcoin prices, hash 

Fig. 1. Traditional A − 6 Wind farm project with a wait time of four years to 
begin construction and start of operations for energy sales in the Long Term 
regulated market at the end of year 6. 
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rates, and electricity prices as dynamic stochastic diffusion processes 
rather than use static historical values, and consider that the wind farm 
has the flexibility to optimally decide whether to sell energy or mine 
Bitcoins. 

2.4. Blockchain and renewable energy 

One of the first comprehensive reviews of blockchain applications in 
the energy sector was done by Andoni et al. [29], who reviewed and 
classified 140 commercial listed blockchain and research initiatives and 
provided a detailed analysis of energy applications and P2P energy 
trading. They showed that 19% of the 140 projects were related to 
cryptocurrencies, tokens, and investment and that some of the first 
blockchain applications in the energy sector were the use of Bitcoin for 
energy payments. Andoni et al. [29] also describe a waste-to-power 
energy plant with a cryptocurrency mining facility, where investors 
can purchase an energy token named KWATT through an ICO (Initial 
Coin Offering) process. Investors can then decide to either sell energy to 
the grid or use it to mine cryptocurrency. This provides a switch option 
that is similar to our model, but contrary to our paper does not provide 
an electricity price hedge for the power producer. Orcutt [30] reports 
that Bitcoin mining facilities totaling 1400 MW are currently under 
development in west Texas where they will be powered by the large 
wind power generation capacity available in that area, and in Morocco, 
the first phase of a 900 MW wind farm Bitcoin mining facility is un-
derway [31]. Blockchain is recognized as one of the 10 top strategy 
technologies [32]. Castellanos, Coll-Mayor & Notholt [33] and Zhao, 
Guo & Chan [34] list and analyze blockchain applications in the 
renewable energy sector, such as green energy certificates guarantee of 
origin. 

3. Model 

The model considers a wind farm in Brazil that is bound to enter 
service in 6 years under an A-6 contract, that the construction of the site 
will begin immediately and that the available energy will be sold in the 
short-term market until the moment where the wind farm must begin to 
deliver its contracted capacity. A Bitcoin mining plant that will be built 
on the same site as the wind farm is also modeled. This allows the wind 
farm to optimally switch from selling energy in the short-term market 
each month to producing Bitcoins at the mining facility and selling those 
instantly on an online exchange. 

The wind farm is assumed to become operational 24 months after the 
start of construction and the only cost involved is the cost of anticipating 
the capital investment by four years. The Bitcoin mining facility will be 
built in 3 months and operate for two years, after which it will be fully 
depreciated due to technological obsolescence. A scenario where new 

mining hardware is purchased near the end of the fourth year and 
operated for an additional two years is also considered. 

In the base case, the firm sells all power produced at PLD for four 
straight years. The first switching scenario considers that at each 
monthly period, the producer can choose whether to sell power at PLD 
or use it to produce Bitcoins during years 3 and 4. The second switching 
scenario assumes that the producer will purchase a new set of mining 
hardware at the end of year 4 in order to operate the mining facility 
during years 5 and 6 also. 

The model assumes a deterministic seasonal regime for the power 
output of the wind farm based on Lira et al. [35]. In the regulated 
market, the generator is limited to its assured capacity in the contract. 
However, during the anticipation period, the power generator is free to 
use all of its output. In addition, the mining facility was designed to 
operate non-stop and will have a maximum capacity of consumption 
equal to the lowest month of power generation. The mining facility will 
be unable to use the full energy output of the wind farm as part of this 
power must be used for refrigeration purposes. 

3.1. Modeling Bitcoin price and mining difficulty 

Cryptocurrencies, such as Bitcoin, are traded continuously around 
the globe, 24 h a day, and 7 days a week. Although highly volatile in 
price, Bitcoin market capitalization has grown, attaining 130 billion 
USD as of December 2019 Figure 2. 

Given that Bitcoin mining is a trial and error process, the time a 
particular miner spends to find a proper signature for a block of trans-
actions is a random variable and can be approximated by Eq (1) [36].  

T = D * 232 / H                                                                               (1) 

where D is the network difficulty; H is the mining hardware hash rate; T 
is the average time in seconds to find a proper hash for a Bitcoin block of 
transactions and 232 is the expected number of hashes to find a valid 
block. Assuming a constant flow of production, which can be achieved 
by participating in mining pools and sharing the profits according to the 
hash rate of each participant, the revenue of Bitcoin mining can be 
estimated using a modified version of Eq (1). By including additional 
variables such as the network reward, which is the number of Bitcoins 
earned for each valid block found, and the USD/Bitcoin exchange rate, 
the mining revenue can be determined as shown in Eq (2).  

π = P * R * H * t / (D * 232                                                             )(2) 

where P is the BTC$; R is the amount of Bitcoin earned as a reward per 
block; t is the length of time the equipment is used for mining in seconds, 
and π is the revenue of the Bitcoin miner. As the block reward R is set by 
the network within a specific time-frame and the hash rate H and time t 
are decided by the miner, the only exogenous variables are in the price P 
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and the network difficulty D. 
The network difficulty is a determining factor in the earnings from 

mining operations. At every 2016 blocks or approximately every two 
weeks, the mining difficulty is automatically adjusted to take into ac-
count increases in the global hash rate so that the 10 min time interval 
between each generated block remains constant. Due to this adjustment, 
Bitcoin mining should have very narrow margins, and the profitability is 
mostly dependent on the price of electrical power used for the proof-of- 
work calculations. This work models the revenue stream of a mining 
farm as a function of the ratio of BTC$ and the network difficulty. 

To model the BTC$/Diff ratio, the stochastic process of this uncer-
tainty must be determined. The ADF test [37] with intercept and trend 
on the log of these monthly series provides a t-statistic value of − 2.029, 
which does not reject the existence of a unit root even at a 10% confi-
dence level. Likewise, the variance ratio test does not stabilize below 1, 
which is a strong indication that the series follows a Geometric Brow-
nian Motion (GBM) diffusion process. Thus, the price/difficulty ratio is 
modeled as shown in Eq (3).  

dB = μBdt + σBdz                                                                          (3) 

where B is the BTC$/Diff ratio to be modeled, μ is the drift parameter, σ 
the volatility parameter, dt the time increment, and dz the standard 
Weiner process where dz = ε dt0.5 ε ≈ N (0,1). The simulation equation 
for the price B rate is given by Eq (4). 

Bt =Bt− 1e(μ− σ2/2)Δt+σ
̅̅̅̅
Δt

√
N(0,1) (4) 

The calculated parameters in monthly values are shown in Table 1. 
The decreasing trend of this variable implies that cryptocurrency 

production suffers diminishing gains, which is observed in practice by 
real-life miners. This is due to the fact that as mining hardware tech-
nology improves and more miners join the network, the output from 
older mining equipment decreases. 

It is assumed the investor will always choose the latest technology 
available at the time of purchase. Thus, the negative drift is applied at 
the start of the first two-year mining period at the end of year 2. If the 
firm chooses to purchase new equipment at the end of year 4 in order to 
benefit from a second two-year mining period, the value of the BTC 
$/Diff variable is brought back to its starting level, and the negative drift 
will come into effect again (see Fig. 3). 

3.2. Modeling electricity (PLD) price 

Weekly series of spot energy prices (PLD) are available for the North- 
Eastern region of Brazil, where most wind farms are located between 
January 2000 and November 2019, as informed by the Brazilian Elec-
trical Energy Clearing Chamber (CCCE) [38] and converted to 
USD/MWh. These are shown in Fig. 4. 

As was done for the previous variable, in order to determine the most 
appropriate stochastic process to model PLD series, first an Augmented 
Dickey-Fuller (ADF) test was run with intercept and trend on the log of 
the series. The t-Statistic obtained is − 4.154976, which rejects the 
presence of a unit root even at a 1% level (− 3.967667) for this number of 
samples. Therefore, there is a strong indication that the series is mean 
reverting. In order to confirm this, a Variance Ratio test was ran on the 
log of the series. As the value of the Variance Ratio for PLD rapidly drops 
below 1 and converges to values below 0.1 after 300 days, it confirms 
the presence of a mean reversion for this time series. Therefore, the PLD 
energy price was modeled as a Geometric Mean Reversion (GMR) 

diffusion process, as proposed by Schwartz [39], and shown in Eq (5).  

dP = η (ln                                                                                      (5) 

P - lnP) P dt + σP P dz 
where P is the price modeled, η is the mean reversion speed 

parameter of the process; σP is the volatility of the PLD price; P the mean 
or equilibrium level of the PLD price; dt the time increment and dz is the 
standard Weiner increment. In order to calibrate these parameters, we 
used the approach described by Dias et al. [15]. The question remains on 
the time span to choose for this purpose, as it seems from the series in 
Fig. 4 that the mean level of prices has changed during this period. 

Hydropower capacity is still by far the primary source of electrical 
energy in Brazil, accounting for more than 80% of the installed energy 
generation capacity. Since 2007 though, a lack of regular rainfall has 
drained the reservoirs of the Southeast region, which accounts for the 
majority of the storage capacity of the country, and also in the North-
east, where most of the wind farm capacity is located. This has led to a 
systematic increase in energy prices, as can be observed in Fig. 4. 
Nevertheless, the proposed model was calibrated using the full time span 
from July 2000 to November 2019 in order to better model the expec-
tation of future energy prices. 

As defined in Dias et al. [15], the risk-neutral simulation for this 
stochastic process is defined by Eq (6). 

Pt = exp

{

ln(Pt− 1)e− ηΔt +

[

ln
(

P
)
−

σ2
P

2η

]

(1 − e− ηΔt)+ σP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − e− 2ηΔt

2η

√ }

(6)  

where Δt is the time increment to be used in the regression. Simulations 
in this paper will be performed for monthly periods of cash flows. 

Table 1 
GBM parameters for BTC$/Diff modeling in monthly and yearly periods.   

Month Year equivalent 

μ − 3.66% − 43.9% 
σ 22.28% 77.2%  

Fig. 3. Average monthly Bitcoin price/difficulty ratio (BTC$/Diff) between 
January 2015 to November 2019. Source: Authors. 
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Fig. 4. PLD electricity spot prices for the Northeastern region of Brazil from 
Jan/2000 to Nov/2019. Source: CCEE [43]. 
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According to Dias et al. [15] all other parameters (η, σP and P) are 
calibrated by running a regression of the increment of the log of the Pt 
time series against the log of Pt-1. The values obtained are displayed in 
Table 2. 

The initial value, at t0, for the simulation of the PLD time series is the 
last value of the PLD displayed in Fig. 4: Po = 75.00 USD/MWh. It also 
considers the regulatory cap for PLD price at Pmax = 150 USD/MWh, as 
an upper limit for simulation of PLD prices. 

The value of P listed in Table 2 is already adjusted for the risk-neutral 
approach, necessary to value real options. For this conversion, we use the 
numerical estimation approach developed by Freitas & Brandão [40]. 

Bitcoin prices and mining hash rates are global uncertainties driven 
by worldwide demand and supply. In contrast, PLD electricity prices in 
NE Brazil are mostly correlated to hydroelectric reservoir levels and 
expected climate conditions. Thus, we assume that the Bitcoin price/ 
difficulty ratio and PLD electricity prices are uncorrelated. This is also 
confirmed by a Pearson Correlation factor of only 0.0287, and thus both 
variables are stochastically modeled as independent and uncorrelated 
uncertainties. Our model also assumes that managers are rational and 
will always optimally exercise the option to switch outputs at the 
appropriate times, and does not take into account any human failings to 
maximize value. 

4. Numerical application 

4.1. Cash flow and investment structure of the base case scenario 

The base case is an A-6 wind energy project that will begin con-
struction immediately, which allows it to sell its energy in the spot 
market for four years. We use the data developed in Fontanet [41], who 
models a typical wind farm in Brazil with conditions similar to the one in 
this study, which are shown in Table 3. 

The capital expense (CAPEX4) in year 4 is the investment cost of the 
wind farm required in year 4 in order for it to start operations in year 6. 
If construction is to begin immediately, this investment must be antici-
pated to year 0. The only costs involved in this case are the capital costs 
of anticipating this investment, which is the difference between the year 
4 CAPEX4 and the same value discounted to time zero, or CAPEX0 =

CAPEX4 – CAPEX4/(1 + k)4, which is USD 2,527,815. This scenario is 

illustrated in Fig. 5. 
It also considers that when selling energy in the free market, the 

volume of electricity sales is limited by the plant capacity and wind 
speed regime in the region, as described by Lira et al. [35]. Fig. 6 shows 
the monthly power generation averages for the wind farm.  

EECFt = Pt × Outputt × (1 – T) × (1 – VariableCosts) – FixedCosts      (7) 

where: 
EECFt: Cash Flow from energy sales in month t. 
Pt: Stochastic energy price in month t. 
VariableCosts: 14% of total revenue. 
FixedCosts: USD 13,200 per month. 
Output t: Monthly energy production as in Fig. 6. 
T: Revenue Tax rate (8 % × 34 % + 9 % × 12 % = 3.08%) in Brazil. 
EECFt will be earned by the constructor for 48 consecutive months 

after the construction period of 24 months. The time zero value of the 
base case scenario is determined by Eq (8). 

V =
∑72

25
EECFt

/
(1 + r)t (8)  

r is used as the discount rate since EECFt is already estimated under the 
risk-neutral approach. 

4.2. Switching between Electricity and Bitcoin sales 

Once the wind farm is in place and producing energy, the firm can 
invest the value of CAPEXBTC in a Bitcoin mining plant that operates on 
the wind farm electricity output. Data for this mining plant is shown in 
Table 4. 

The Bitcoin mining operations will generate the cash flows described 
in Eq (9).  

BCCFt = Bt × Outputt × (1 – T) × (1 – VariableCosts) × (1 – RefrigCost) – 
FixedCosts                                                                                     (9) 

where: 
BCCFt: Cash flow from Bitcoin sale in month t 
Bt: BTC$/Diff in t (stochastic and modeled with (4) 
RefrigCost: Estimated in 15% of total energy consumed by mining. 

Table 2 
Parameters for the GRM model for PLD.   

Month Year 

η 0.0804 0.96456 
σ 55.70% 192.95% 
P  32.88 USD/MWh 

Pmax 150 USD/MWh  

Table 3 
WindFarm parameters and specifications.  

Capacity (monthly output) 7154 MW (Nominal) 

CAPEX4 (in year 4) 9,540,000 USD 
CAPEX0 (Cost of a 4-year anticipation) 2,527,815 USD 
Risk Adjusted rate or Cost of Capital (k) 8% (year) 0.64% (month) 
Risk Free rate (r) 5% (year) 0.54% (month)  

Fig. 5. Base Case scenario: Immediate construction of the power plant with a 
duration of two years followed by four years of short term spot market sales at 
PLD prices. 
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Fig. 6. Windfarm average monthly energy generation as impacted by the 
seasonality of the wind regime. Original data in average wind speed (m/s), 
converted to energy generation using maximum farm capacity. Source: Lira 
et al. [40]. In this scenario, the firm will earn the monthly cash flows shown in 
Eq (7). 

Table 4 
Bitcoin mining plant specifications.  

Cost of mining processor 1900 USD 

Number of mining processors 1750 
CAPEXBTC (USD) 3,325,000 USD 
Equipment life 2 years  
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Considering that the Bitcoin mining facilities must be ready to begin 
operation together with the wind farm, the capital investment in mining 
equipment must take place in month 22, as there is a three-month build 
up time. Once operations begin, the firm can choose each month 
whether to sell all its produced energy at PLD or to use this energy to 
create Bitcoins in the mining facilities. The choice made by maximizing 
the corresponding value of the expected cash flow of Eq. (7) or Eq. (10). 
This can be modeled as a bundle of sequential European switch options 
with monthly exercise periods and no switching costs. These options can 
be priced with Monte Carlo Simulation (MCS), which is very flexible and 
easily allows the use of different types of stochastic processes, such as 
those used for the variables in this article. Therefore, in each monthly 
period where there is the possibility of switching between both types of 
operation, the cash flow of the project PCF will be estimated by Eq (10).  

PCFt = Maximum [λt×BCCFt + (1-λt)× EECFt; EECFt]                    (10) 

where λt is a proportion of the produced energy given by the total 
consumption of the Bitcoin mining facility (including refrigeration). 

Also, when the investment is made in the mining facility, this value 
of CAPEXBTC, as listed in Table 4, is included in the estimation of PCFt, 
whether selling energy or Bitcoins. Now the time zero value of the 
project with Bitcoin mining scenarios is determined by Eq (11). 

V =
∑72

25
PCFt/(1 + r)t (11). 

Two Bitcoin mining scenarios are analyzed. In the first scenario, a 
single investment in Bitcoin mining equipment is made at the end of year 
2, and the firm will have the option to switch outputs during two years, 
from year 3–4. After year 4, given that the mining equipment will be 
obsolete and no Bitcoins can be mined efficiently anymore, the firm can 
now only sell its electricity output in the short-term market, as illus-
trated in Fig. 7. 

The second scenario assumes that the firm will make an additional 
investment in new mining equipment at the end of year 4 so that mining 
operations can continue for another two years, as shown in Fig. 8. 

Both the PLD prices, which is a local uncertainty, and the Bitcoin 
price/difficulty ratio, which is a global uncertainty, are modeled as 
uncorrelated stochastic variables with distinct diffusion processes, as 
shown in Section 3. Fig. 9 presents a flowchart of the numerical 
application. 

5. Results 

5.1. Base case: immediate wind farm construction for energy sales in the 
free market 

The base case scenario considers the immediate construction of the 
plant, which will take two years, followed by four years of energy sales 
in the spot market at PLD prices. Under an A-6 contract, the cost of 
anticipating the original capital investment scheduled for year 4 is the 
difference between the original year 4 CAPEX and the present value of 
this CAPEX at t = 0. After the two-year investment period, the firm will 
begin receiving the cash flows from energy sales described in Eq. (12). 
We estimate the present value of this scenario using Monte Carlo 
Simulation in order to determine the probability distribution of the Net 
Present Value (NPV). These are displayed in Fig. 10 . 

This scenario yields a positive expected NPV of USD 1.51 million but 
also has a 38% probability of having a negative NPV. This suggests that 

anticipating the construction of the wind farm by four years solely to sell 
electricity in the spot market is a risky decision, as it exposes the firm to 
the volatility of the PLD price dynamics. 

5.2. First switching scenario 

We now consider the case where along with the construction of the 
wind farm, a Bitcoin mining facility with the characteristics listed in 
Table 4 is built during the three months prior to the farm becoming 
operational. The mining facility will operate for two years, after which 
further mining efforts become inefficient as the bit-rate increases to 
infinity, and the equipment becomes obsolete. Thus, for the final two 
years, the wind farm directs the totality of its energy production for sale 
in the spot market. 

For the Bitcoin diffusion process, we adopt a drift value of μ: 3.66%, 
only after the acquisition of the mining equipment, as explained in 
section 3.3. Again, we estimate the present value of these cases running 
50,000 iterations of a Monte Carlo Simulation in order to determine the 
probability distribution of the NPV results and compare these to the ones 
obtained from the scenarios without the switch options (Fig. 11). 

The average NPV of this first scenario (two years of Bitcoin mining) is 
USD 3.6 million, which represents an increase of 139.4% over the base 
case, while the probability of a negative NPV occurring drops to 24%. 
This indicates that the ability to mine Bitcoins for two years adds sig-
nificant value and reduces the risk of the project. Fig. 12 shows the 
percentage of times where it will be more advantageous for the wind 
farm output to sell electricity directly in the short-term market at PLD 
prices or to mine Bitcoins for the two-year switching period. It can be 
seen that as the bit-rate of the mining equipment increases in the hash 
rate of the blockchain network, the efficiency of Bitcoin mining de-
creases, and direct electricity sales become more advantageous. 

5.3. Second switching scenario 

The first switching scenario assumes that Bitcoin mining capacity 
runs out in two years due to the ever-increasing mining difficulty. In the 
second switching scenario, we consider the case where the firm makes 
additional investment in new state-of-the-art mining equipment, which 
brings back down its bit-rate and allows it to operate the mining facility 
for an additional two years. This is scenario two: 2 + 2 years of Bitcoin 
mining. 

The NPV of this second scenario is USD 5.74 million, an increase of 
281.3% over the base case, while the probability of a negative NPV is 
further reduced to 15%, down from 38% of the base case. This represents 
an even greater improvement over the base case both in expected NPV 
and in risk reduction (Figure 13). 

Under this scenario, the mining efficiency decreases during the first 
two years, followed by an instant increase in the third year as new 
modern equipment enters operation in the third year. Fig. 14 shows the 
probability that each output will be the optimal choice during the four- 
year switching period. The increase in efficiency at the start of year 3 can 
also be clearly seen. 

6. Discussion 

The Brazilian system regulator promotes reverse bid auctions where 
the winner will receive a fixed income during the life of the project, thus 
guaranteeing a return on its investment. Therefore, while anticipating 

Fig. 7. First switching scenario: A single investment in Bitcoin mining equip-
ment and two years of switching capability between electricity and Bitcoin 
sales. After the fourth year, the mining equipment becomes obsolete, and the 
firm can only sell electricity in the spot market at PLD prices. 

Fig. 8. Second switching scenario: An additional investment in Bitcoin mining 
equipment in order to continue operations and allow for output switching for 
two more years. 
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Fig. 9. Flowchart of the numerical application.  
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Fig. 10. Base case scenario: NPV distribution of the base case considering 
immediate construction and four years of energy sales in the spot market in 
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Fig. 11. NPV distribution of the first switching scenario, which considers two 
years switch option of Electricity x Bitcoin in millions of USD. 

Fig. 12. Switching option probabilities of sales of Bitcoins produced and 
Electricity sales in the short-term spot market for the first switching scenario. 
The uneven pattern of the probabilities is due to the seasonal nature of the wind 
regime and the consequent variation in the energy output of the windfarm. 
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Switch option Electricity x Bitcoin in millions of USD. 

C.L. Bastian-Pinto et al.                                                                                                                                                                                                                       



Renewable and Sustainable Energy Reviews 138 (2021) 110520

9

the construction of a wind farm wind may increase the project NPV, it 
also increases the risk. By incurring in the additional cost of investing in 
a Bitcoin mining facility, the wind farm can create a natural hedge 
against low electricity prices for itself as we show. The main results of all 
the scenarios are summarized in Table 5. 

The results indicate that anticipating the construction of the wind 
farm by four years increases the value of the project by $1.5 million. 
Nonetheless, given the high volatility of electricity spot prices, the 
Monte Carlo Simulation (MCS) shows that this alternative adds signifi-
cant risk to the project and a high probability of a negative NPV. The 
investment in a two-year Bitcoin mining plant increases the returns to 
$3.6 million while reducing the risk to 24% while extending this in-
vestment for a total of four years reduces the risk even further to 15% 
while the NPV increases an additional 60% to $5.74 million. Anticipa-
tion of the construction of renewable capacity generation is also in the 
interest of the regulator, as it guarantees that this capacity will be 
available on the scheduled date as planned and help meet the carbon 
reduction goals. 

The advent of the COVID-19 pandemic shows that the model is 
robust as the increase in Bitcoin prices and the significant fall in elec-
tricity spot prices in Brazil would provide an opportunity for the wind 
farm to profit by switching to bitcoin mining with cheap energy. Both 
stochastic variables were calibrated based on data series that did not 
include the market turbulence resulting from the pandemic crisis. 
Nevertheless, the observed volatility was within the parameters adopted 
in this study. This shows that the model developed here has practical 
application and is of value to renewable energy managers even in 
difficult times. 

Although this article applies the model to a particular case in Brazil, 
the model can be easily adapted to other regions, countries, and regu-
latory environments as long as the investor has some degree of flexi-
bility. The real options model and approach proposed is subject to the 
wind farm having enough anticipation time to profit from the flexibility 
of switching its outputs. However, ANEEL only promoted A-6 auctions 
for wind energy in 2017, 2018, and 2019. All previous auctions had been 

at most A-5, which does not allow a second “round” of bitcoin mining 
investment before entering the regulated market. The time to the 
beginning of energy delivery depends on the regulator’s strategy, but 
can also be used as an incentive strategy for investors, who can then 
implement hedge mechanisms such as the one modeled in this article. 

Limitations of this study include the assumption that wind farm in-
vestors have access to capital required to anticipate construction, since 
these costs are typically not covered by the long-term energy contract 
won at the auction. The same applies to the investment in the Bitcoin 
mining facility. It is also assumed that the decision to sell electricity or 
mine Bitcoins is made at the beginning of each month and that prices of 
both variables will be remain constant until the time of the next deci-
sion. This simplification has also been used by other authors such as 
Bastian-Pinto, Brandão & Alves [42], Brandão et al. [16] and Oliveira 
et al. [18], which is minimized by the use of a monthly, rather than 
yearly, time discretization and allows for the use of European Options 
modeling with MCS. Another potential limitation are the risks of 
transacting with Bitcoins. Muftic [43] identifies four major Bitcoin 
trading vulnerabilities: problems caused by users, by miners, by hackers, 
and man-in-the-middle attacks. Nonetheless, in its 11 years of existence, 
the Bitcoin blockchain has shown itself to be very robust, which suggests 
that this risk can be minimized by not storing the digital asset and the 
use of state-of-the-art Information and Communications Technology 
(ICT). 

7. Conclusions 

In this article, we show that the construction of renewable energy 
sources such as wind farms in Brazil has suffered from significant delays 
that create problems for the system regulator (ANEEL) and affect the 
energy security of the country. Ideally, in an A-6 auction, the firm would 
invest immediately and sell the energy generated to earn revenues in the 
short-term spot market during the four years prior to the beginning of its 
commitment to the long-term market in year 6. We show that due to the 
high volatility of the PLD spot prices, this is unlikely to occur due to the 
high risk involved, and most projects will be designed to come on-stream 
on the latest date possible, if at all. 

In order to create incentives for early investment, we propose a wind 
farm investment model that involves simultaneously building a Bitcoin 
mining facility. This allows the firm to switch outputs between elec-
tricity and Bitcoin sales, depending on their relative prices and the ef-
ficiency of the mining operations, or bit-rate. While both electricity and 
Bitcoin prices are highly volatile, these uncertainties are uncorrelated 
and follow distinct stochastic processes. Because Bitcoin mining is more 
profitable when energy prices are low, the option to switch between 
these two outputs offers significant gain by hedging between uncorre-
lated assets. 

Our results suggest that the option to switch outputs by investing in 
Bitcoin mining equipment significantly increases the value of antici-
pating wind farm construction, be it a two-year mining or a four-year 
mining window. In addition, this particular switch option reduces the 
risk of the project, providing further incentives for the early construction 
of the renewable energy power plant. 

The main conclusion we can derive from these results is that the 
power industry, especially intermittent power producers that rely on 
natural sources of power, can benefit from this hedging mechanism. In 
our case, Bitcoin was the option of choice due to the simplicity of the 
mining infrastructure construction, maintenance, and costless switch-
ing, but other energy-intensive assets can be used. This type of switch 
option may increase profitability while reducing risk and its widespread 
use could foster the growth of the construction of new renewable energy 
sites globally. 

The findings of this article may be of use to the Brazilian Electricity 
System regulator (ANEEL) in developing policies that foster more timely 
completion of planned renewable power units by creating incentives 
towards the production and sale of cryptocurrency mined by energy 

Fig. 14. Switching option probabilities between sales of Bitcoins produced and 
Electricity sales in the short-term spot market for the second switching scenario. 
Again, the uneven pattern of the probabilities is due to the seasonal nature of 
the wind regime and the consequent variation in the energy output of 
the windfarm. 

Table 5 
Summary of results for all investment scenarios.   

Mean of NPV 
(USD) 

Prob of Negative 
NPV (%) 

NPV Increase over Base 
Case (%) 

Base Case 1,505,392 38% – 
2 Years 3,603,851 24% 139.4% 
2 + 2 

Years 
5,739,867 15% 281.3%  
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generators. Investors in renewable energy plants also benefit from this 
switching strategy as it may provide higher returns at lower risk on their 
capital. 
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Appendix 

Wind farm projects in Brazil that have had their execution suspended or have low probability of timely completion as of Nov 2019, according to 
ANEEL [3].   

Project Id Auction Project Location Power Capacity (KW) 

31120 None São Salvador BA 18,900 
31271 None Ventos de Santo Adriano PI 18,900 
31402 May/13 Abil BA 23,700 
31403 May/13 Tabua BA 15,000 
31404 May/13 Angico BA 8100 
31405 May/13 Jabuticaba BA 9000 
31406 May/13 Taboquinha BA 21,600 
31407 May/13 Folha de Serra BA 21,000 
31408 May/13 Jacarandá do Cerrado BA 21,000 
31418 May/13 Acácia BA 16,200 
31424 May/13 Vaqueta BA 23,400 
31535 Sep/13 Curupira RS 23,100 
31536 Sep/13 Fazenda Vera Cruz RS 21,000 
31562 Sep/13 Povo Novo RS 8400 
31685 None Santa Veridiana PI 29,700 
31686 None Santa Verônica PI 29,700 
31687 None São Moises PI 29,700 
31688 None São Felix PI 29,700 
31689 None São Basílio PI 29,700 
31690 None Santo Anastácio PI 29,700 
31691 None Santo Amaro do Piauí PI 29,700 
32090 None Amescla BA 13,500 
32091 None Angelim BA 21,600 
32093 None Barbatimão BA 16,200 
32098 None Cedro BA 12,000 
32101 None Facheio BA 16,500 
32102 None Imburana Macho BA 16,200 
32104 None Jataí BA 16,200 
32106 None Juazeiro BA 18,900 
32108 None Sabiu BA 13,500 
32111 None Umbuzeiro BA 18,900 
32113 None Vellozia BA 16,500 
32245 None Manineiro BA 14,400 
32246 None Pau D′′Água BA 18,000 
32362 Aug/14 Mulungu BA 13,500 
32363 Aug/14 Pau Santo BA 18,900 
32364 Aug/14 Quina BA 10,800  
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