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We demonstrate theoretically that Bitcoin’s limited adoption arises as an equilibrium out- 

come rather than as a short-lived property. Our results are driven by negative network 

effects which arise due to Bitcoin’s need for consensus and the existence of network de- 

lay. As the Bitcoin network expands, network delay grows thereby prolonging the time 

needed for generating consensus. In turn, transaction settlement becomes prolonged, and 

users abandon the system, yielding limited adoption. Increasing transaction rates fails to 

solve this problem because increasing transaction rates increases fork probabilities which 

prolongs the consensus process and generates limited adoption. 

© 2022 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Bitcoin was proposed by Nakamoto (2008) with the

goal of becoming a widely adopted decentralized payment

system. To date, however, Bitcoin remains sparsely adopted

as a payment system. Accordingly, a natural question be-

comes whether Bitcoin’s economic design is compatible

with its goal. This paper answers that question by demon-

strating that Bitcoin’s design makes limited adoption an

equilibrium outcome. 

Our results arise because we uncover the existence

of negative network effects within Bitcoin’s design. These

negative network effects distinguish Bitcoin from tradi-

tional centralized payment systems and serve as the driv-

ing force for its limited adoption. To understand how nega-

tive network effects arise, we emphasize that a blockchain
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constitutes a unique electronic ledger that is stored among 

a potentially large network of agents commonly referred 

to as miners . Bitcoin’s design implies that miners are likely 

to possess inconsistent ledgers at certain times, but such 

inconsistencies must be reconciled for Bitcoin to be viable 

because a transaction is deemed settled only if all miners 

agree on it being on the ledger. Our analysis uncovers that 

achieving agreement among miners, commonly referred to 

as consensus , becomes more difficult as the mining net- 

work size increases which, in turn, contributes to negative 

network effects. 

The economics literature has thus far overlooked the 

negative network effects from Bitcoin. That oversight arises 

because theoretical analyses of Bitcoin typically neglect to 

model network delay which refers to the time required to 

communicate information across the mining network. A 

novel feature of our analysis is that we incorporate net- 

work delay which, together with the need for consen- 

sus, generates negative network effects. To understand this 

point, we highlight that miners cannot agree on any par- 
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ticular information unless they are all aware of that infor-

mation. Network delay is relevant because it corresponds

to the time required for new information to become com-

mon information across the network. As we discuss in

Section 2.3 , network delay imposes limits upon the abil-

ity to generate consensus expeditiously even when miners

attempt to coordinate. Our analysis highlights that these

limits contribute to prohibitive delays for Bitcoin users and

consequently induce limited adoption. 

We model Bitcoin as a queuing system in which miners

service a set of users. Each user has a unit transaction de-

mand and derives utility from her transaction being settled

on the blockchain. Users have a heterogeneous disutility

for waiting. Each user may pay a transaction fee to reduce

her expected wait time, but each user also incurs disutility

in proportion to the fee paid. Therefore, each user selects

a fee level in equilibrium to optimally balance her dislike

for waiting with that of paying a fee. If her optimal utility

from using Bitcoin falls below a reservation level then she

chooses to abandon Bitcoin, and we classify this choice as

non-adoption. The reservation level reflects the existence

of an outside option so that not adopting Bitcoin implies

transacting via a traditional alternative payment system. 

Our first main result, Proposition 2 , highlights that Bit-

coin cannot maintain a non-negligible adoption rate when

transaction demand becomes large. We deem this inabil-

ity to maintain a non-negligible adoption rate for large

transaction demands as limited adoption , which aligns our

meaning of limited adoption with common usage. To un-

derstand how our meaning of limited adoption aligns with

common usage, we offer a simple fact: Bitcoin is used by

more people than certain developed economy fiat curren-

cies, but Bitcoin’s adoption rate among all people is triv-

ial whereas those developed economy fiat currencies pos-

sess a near-universal adoption rate within their respective

countries. To give a concrete example, New Zealand has ap-

proximately 5 million people within its borders whereas

over 30 million people use Bitcoin. Nonetheless, the New

Zealand Dollar (NZD) is not considered sparsely adopted,

and Bitcoin is not considered widely adopted as a payment

system. The referenced framing arises because the adop-

tion rate of NZD in New Zealand is approximately 100%

whereas the adoption rate of Bitcoin almost anywhere in

the world is less than 1%. Thus, we focus on the adoption

rate rather than the raw number of users. Moreover, we

examine the adoption rate as transaction demand becomes

large because we seek to understand how widely adopted

Bitcoin could become if it were to compete directly with

traditional payment systems which experience large trans-

action demands. 

We relate the aforementioned result to three features

of Bitcoin: the need for consensus among miners, free en-

try with respect to the mining network, and a supply con-

straint on the transaction rate. As discussed, the need for

consensus arises because the blockchain is a unique ledger,

and disagreement implies that miners possess different

ledgers. Free entry is directly imposed within Bitcoin by

the fact that serving as a miner requires no special per-

mission, implying that mining is feasible but not necessar-

ily incentive-compatible for all agents. As previously noted,

users may pay fees to reduce wait times, and those fees
348 
are paid to miners. Potential miners trade off the benefits 

from earning those fees against the costs of participating 

in the mining process. Accordingly, our analysis imposes a 

free-entry condition by determining the set of active min- 

ers as those for whom mining is economically profitable. 

The supply constraint on the transaction rate refers to an 

observed fact of Bitcoin. More precisely, the Bitcoin ledger 

updates approximately every 10 min and that rate of up- 

dating corresponds to a supply constraint on the transac- 

tion rate. 

Proposition 2 arises from a straight-forward economic 

analysis. The supply constraint on Bitcoin’s transaction rate 

implies that prices rather than quantities primarily re- 

spond to an increase in transaction demand. Thus, height- 

ened transaction demand endogenously generates an in- 

crease in fees (i.e., the price for expedited service). The 

fee increase, in turn, augments expected revenues from 

serving as a miner. The mining network’s free entry con- 

dition then implies that additional miners enter the net- 

work. The resulting network expansion exacerbates net- 

work delay which, due to the need for consensus, pro- 

longs expected user wait times. The prolonged user wait 

times then drive users away from Bitcoin towards the tra- 

ditional alternative so that a shrinking fraction of users ac- 

tually adopt Bitcoin. Accordingly, Proposition 2 establishes 

that Bitcoin cannot maintain a non-negligible adoption rate 

when facing heightened demand - we term this problem 

the limited adoption problem . 

A natural response to the described limited adoption 

problem might be to propose that Bitcoin adopt a flexi- 

ble transaction rate that expands in the presence of height- 

ened demand. While such a proposal may succeed in a tra- 

ditional setting, we find that it fails in the case of Bitcoin 

due to Bitcoin’s decentralized economic design, which re- 

quires consensus and makes network delay an important 

constraint. We formalize that point via our second main 

result, Proposition 3 . 

To convey the intuition from Proposition 3 , we offer an 

example of how an expansion of processing rates solves 

limited adoption in a traditional setting and contrast that 

with Bitcoin’s context. For the example of a traditional set- 

ting, we consider a grocery store. Just as Bitcoin might 

face a heightened demand for transactions, the grocery 

store might face a heightened demand for check out by 

customers. Nonetheless, the grocery store’s heightened de- 

mand need not lead to prohibitive wait times and cus- 

tomers abandoning the store (akin to limited adoption) be- 

cause the grocery store could counter the heightened de- 

mand by increasing the number of check-out counters (i.e., 

increasing the processing rate). The increased processing 

rate would then reduce wait times, thereby solving the 

problem. In contrast, the analogous action of increasing 

Bitcoin’s transaction rate fails to solve the limited adoption 

problem for Bitcoin. This failure arises precisely because of 

the need for consensus and the relevance of network delay. 

Importantly, within a grocery store, the cashiers need not 

jointly agree upon one sequence of customers (i.e., they 

do not need to attain consensus); rather, the cashiers con- 

duct parallel processing without any need to communi- 

cate thereby rendering communication time (akin to net- 

work delay) irrelevant. If the cashiers were required to 
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1 We impose R 0 > R to rule out a trivial equilibrium in which no user 

adopts Bitcoin, which we define formally later in this section. Explicitly, 

R = c · ( 1 � + τ (�, �( B 
β
)) where B , β , �, �(·) and τ (·, ·) are introduced 

later in this section. 
communicate with each other and converge upon a sin-

gle sequence of customers processed across all cashiers

(akin to consensus), then increasing the number of cashiers

would not solve the problem because that increase would

exacerbate communication difficulties. Those communica-

tion difficulties would then generate delays, leading to pro-

longed customer wait times. Similarly, within Bitcoin, in-

creasing the transaction rate increases the time needed to

achieve consensus which then generates prohibitive user

wait times and thus results in limited adoption. 

We distinguish between the Bitcoin payment system

and its native asset, bitcoin, with our focus being on the

former. Importantly, our results do not preclude the suc-

cess of bitcoin as an asset. Rather, we demonstrate that

such success is unlikely to be driven by adoption of the un-

derlying payment system so that bitcoin should be viewed

as something other than as a medium of exchange. Recent

work supports this view, demonstrating that transactional

benefits can explain only a trivial fraction of bitcoin price

movements (see Biais et al., 2020 ). 

Our results apply to Bitcoin and similar blockchains

but do not apply to blockchains in general. In particu-

lar, as we discuss in Section 5 , there are a variety of

blockchain proposals that potentially overcome limited

adoption although those proposals remain understudied

among economists. Some particularly compelling proposals

include Bitcoin NG, modern Proof-of-Stake protocols and

permissioned blockchains. 

Our paper relates to a large literature that stud-

ies the economics of Bitcoin. John et al. (2022) pro-

vide a survey of that literature. Moreover, some

notable works within that literature include

Yermack (2015) , Biais et al. (2019) , Easley et al. (2019) ,

Foley et al. (2019) , Raskin et al. (2019) , Biais et al. (2020) ,

Chiu and Koeppl (2020) , Griffin and Shams (2020) ,

Makarov and Schoar (2020) , Alsabah and Capponi (2021) ,

Cong et al. (2021a) , Huberman et al. (2021) and

Pagnotta (2022) . Papers closely related to our work include

Cong et al. (2021b) and Iyengar et al. (2022) . In particular,

both Cong et al. (2021b) and Iyengar et al. (2022) also

study blockchain adoption, but neither examine the

specific context of Bitcoin. Iyengar et al. (2022) study

blockchain adoption in a business context, whereas

Cong et al. (2021b) abstract from network delay, which is

a key friction for Bitcoin as our results establish. 

Our work also relates to a part of the computer sci-

ence literature that offers solutions for scaling blockchains.

That literature provides technical specifications but not

economic analyses. More concretely, the referenced liter-

ature does not model user preferences nor endogenous

adoption decisions so that our work serves as an economic

complement to it. For a survey of prominent ideas from

the referenced literature, the interested reader may consult

Zhou et al. (2020) . 

2. Model 

We model an infinite horizon setting with two types

of agents, users and miners. Our setting also involves two

types of payment systems, Bitcoin and a traditional alter-

native. We assume that each user possesses unit transac-
349 
tion demand and conducts that transaction via either Bit- 

coin or the traditional alternative. Transactions are added 

to the Bitcoin blockchain by miners who receive fees, en- 

dogenously selected by users, for processing those transac- 

tions. The remainder of this section presents our model in 

detail. 

2.1. Users 

At t = 0 , N ≥ 2 users arrive simultaneously. Each user 

possesses unit transaction demand and satisfies that de- 

mand using either Bitcoin or a traditional alternative. 

User i ∈ { 1 , . . . , N} possesses type c i ∼ U[ c , c ] which cor- 

responds to her disutility towards waiting for her transac- 

tion to be processed. We assume that c > c so that there 

exists heterogeneity among users (i.e., P (c i = c j ) = 0 for i � = 

j). We also assume that c > 0 so that all users are impa- 

tient (i.e., c i > 0 for all i ). We let W ( f, f −i ) denote User i ’s

wait time when she pays fee f ≥ 0 with f −i denoting the 

equilibrium fees paid by other users. In turn, User i ’s to- 

tal expected disutility from waiting equals c i · E [ W ( f, f −i )] 

when she pays fee f . We further assume that User i 

earns endogenous utility R 1 · (π∗N) α + R 0 from transact- 

ing via Bitcoin where R 0 , R 1 ∈ R + and α ∈ (0 , 1) are exoge- 

nous parameters, whereas π∗ ∈ [0 , 1] denotes the endoge- 

nous adoption rate of Bitcoin. 1 In turn, π∗N represents the 

endogenous adoption level of Bitcoin. User i ’s total utility 

from transacting via Bitcoin equals R 1 · (π∗N) α + R 0 − c i ·
E [ W ( f, f −i )] − f when she pays fee f . We model the tra- 

ditional alternative as an outside option with utility from 

using it normalized to 0. Therefore, User i solves: 

max { max 
f≥0 

R 1 · (π∗N) α + R 0 − c i · E [ W ( f, f −i )] − f, 0 } 
(1) 

We assume that user types are private information but 

the distribution from which types are drawn is common 

knowledge (i.e., User i does not know c j for j � = i but 

knows c j ∼ U[ c , c ] ). Accordingly, the expectation over wait 

times is taken over the equilibrium fees of other users, 

each of which will depend upon the type of the respective 

user. Miners optimally process transactions in descending 

fee order so that a higher fee improves the probability 

that a user receives service sooner. Each user trades off

the disutility from paying a higher fee with the utility gain 

from a reduction in her expected wait time and thereby 

selects an optimal fee in equilibrium. If R 1 · (π∗N) α + R 0 −
c i · E [ W ( f i , f −i )] − f i ≥ 0 , with f i ≥ 0 denoting User i ’s op-

timal fee, then User i transacts via Bitcoin. Otherwise, User 

i employs the traditional alternative. This adoption choice 

follows from the user’s access to a traditional alternative 

that confers her a utility of 0. 

Akin to Huberman et al. (2021) , we examine cut-off

equilibria with the cut-off denoted by c ∗ ∈ [ c , c ] . More pre- 

cisely, we solve for equilibria such that the set of users that 

adopt is given by { i : c i ≤ c ∗} with User c ∗ being referred 
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5 See de Vries (2018) , Chiu and Koeppl (2020) and Saleh (2019) for de- 

tails regarding the magnitude of energy expenditure and associated wel- 

fare implications. 
6 Formally, the number of valid blocks produced by a miner in any in- 

terval of T time units is given exactly by #(T ) := 

N B ·T ∑ 

n =1 

X n where N B denotes 

the number of attempts per unit time and X n denotes an indicator equal- 

ing one if and only if the n th attempt was successful. The Bitcoin com- 

putational puzzle is specified such that { X n } ∞ n =1 is an independent and 

identically distributed sequence. Then, letting ρ := P (X n = 1) denote the 

probability that an individual attempt succeeds, the Poisson Limit The- 

orem (PLT) implies that #(T ) 
d → Poisson (λ · T ) as N B → ∞ when ρ → 0 + 

with λ := lim ρ · N . Thus, if the number of attempts per unit time is 
to as the marginal user hereafter. We define the adoption

rate, π∗, as the expected proportion of users that adopt

Bitcoin (i.e., π∗ ≡ P (c i ≤ c ∗) ). Consequently, the cut-off, c ∗,

possesses a bijective relationship with the adoption rate,

π∗, as follows: 

π∗ = 

c ∗ − c 

c − c 
, c ∗ = ( c − c ) · π∗ + c (2)

2.2. Miners 

A miner refers to a member of the Bitcoin network that

stores a copy of the Bitcoin ledger and “mines” to update

the ledger. As a convention, we use “miner” to refer to

a single computer processor that participates in the Bit-

coin network. This convention does not preclude that mul-

tiple processors might be controlled by the same agent.

In fact, we discuss the implications of such centralization

in Section 5.1 although our main results hold for arbitrary

mining market structures. 

Each miner must pay some cost β > 0 to acquire min-

ing technology. We assume that each processor possesses

identical hashing power so that each miner expects to earn

an equal share of fees among all miners. 2 Our analysis fo-

cuses on transaction fees, but we allow that there exists a

block reward, B , paid to miners. 3 Then, assuming risk neu-

tral preferences, each miner solves: 

max { 1 

M 

(
B + E [ 

∑ 

i 

f i ] 

)
− β, 0 } (3)

M denotes the equilibrium number of miners so that

the pay-off from mining equals 1 
M 

(
B + E [ 

∑ 

i 

f i ] 

)
whereas

the pay-off from not mining equals 0. Bitcoin’s design al-

lows for free entry among miners, so miners must be in-

different between mining and not mining. Accordingly, we

impose the following free entry condition in equilibrium:

M = 

B + E [ 
∑ 

i 

f i ] 

β
(4)

As an aside, our model assumes that miners are patient.

Accordingly, miners do not discount their fee revenues and

the total expected present value of mining revenues equals

B + E [ 
∑ 

i 

f i ] directly. 4 Our assumption regarding miners be-

ing perfectly patient is a simplification to reflect that min-

ers are significantly more patient than users seeking casual

transactions. More precisely, an hour long wait for a casual

transaction would likely dissuade a user from using Bitcoin
2 This assumption is appropriate since most miners use the same type 

of specialized computing hardware (see Alsabah and Capponi, 2021 and 

Ferreira et al., 2020 ). 
3 We assume that B > β which ensures that it is incentive compatible 

for at least one processor to participate in mining. 
4 It is important to recognize that while our model considers consensus 

delays, our model never generates perpetual disagreement. Rather, within 

our model, consensus always obtains eventually with probability one. As 

a consequence, miners being patient implies that the expected present 

value of mining revenues equals the expected sum of block rewards and 

fees: B + E [ 
∑ 

i 

f i ] . 

350 
for a purchase. In contrast, mining is a business and earn- 

ing revenues an hour (or even days) later would be practi- 

cally immaterial. 

2.3. Blockchain 

A blockchain constitutes an electronic ledger. Users sub- 

mit transactions which are accumulated by miners in dis- 

crete chunks called blocks . In turn, the blocks are placed in 

a chain with a specific order, hence the term blockchain. 

Blocks have a fixed maximal size, and a block can be 

added to the existing chain of blocks only if the block is 

valid . Within the setting of Bitcoin, a block is valid if it 

solves a trivial but computationally intensive puzzle. 5 The 

block generation process is of economic importance be- 

cause it regulates the rate at which transactions enter the 

blockchain which, in turn, affects user utility through user 

wait times. 

The process by which a single miner produces a valid 

block is well-known to be approximated by a Poisson pro- 

cess so that prior literature generally assumes that each 

miner generates valid blocks exactly according to a Pois- 

son process. 6 We also adopt that assumption, but we de- 

part from prior literature with regard to our modeling of 

blocks that ultimately enter the blockchain. In particular, 

our analysis incorporates the fact that all valid blocks do 

not necessarily enter the blockchain. This fact holds true 

because valid blocks might not be consistent with each 

other and thus some valid blocks might have to be dis- 

carded. The possibility for valid blocks to be inconsistent 

with each other is well known and is referred to as a fork . 7 

We first qualitatively explain the source of forks within 

our analysis and then state our formal model of the 

blockchain. Our analysis assumes that miners attempt to 

co-ordinate. More precisely, each Miner j � = i accepts a 

valid block sent by Miner i if Miner i ’s block is consis- 

tent with the blockchain already stored by Miner j when 
N B →∞ B 

large (i.e., N B is large) and the likelihood that each attempt succeeds is 

small (i.e, ρ is near zero), then PLT establishes that the number of blocks 

produced by a given miner, #(T ) , is approximated by a Poisson process. 

In practice, both aforementioned hypotheses are met because attempts 

are conducted by specialized computing units so that N B is large, and the 

computational puzzle is difficult so that ρ is close to zero. 
7 A fork may arise due to network delay or due to misaligned miner 

incentives. Biais et al. (2019) study forks which arise due to misaligned 

miner incentives whereas we focus upon forks that arise due to network 

delay. Decker and Wattenhofer (2013) indicate that Bitcoin forks arise 

largely due to network delay, and our analysis (see Proposition 3 ) indi- 

cates that such forks become especially problematic when the transaction 

rate of the blockchain is increased. 
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Miner j first receives news of Miner i ’s block. If any Miner

j � = i finds that Miner i ’s block is not consistent with her

blockchain when she first receives news of Miner i ’s block

then she rejects the block and a fork arises due to a dis-

agreement between Miners i and j. Under such an as-

sumption, if all miners initially store the same blockchain

(i.e., the blockchain is in a state of consensus) then Miner

i ’s block will not correspond to a fork if no Miner j � = i

produces a valid block before receiving news of Miner i ’s

block. This fact holds because two blocks are necessarily

inconsistent with each other if they are produced with-

out knowledge of each other. 8 Intuitively, if Miner j � = i

produces a valid block after Miner i but before receiv-

ing news of Miner i ’s block then Miner i and j disagree

on the temporal order of their two blocks because each

miner believes that her block was produced first. As the

two blocks are inconsistent with each other, each miner

must select only one of the two blocks. Since either a time-

ordering rule or even personal self-interest would lead to

each miner selecting her own block, a fork results (i.e., lack

of consensus obtains). 

To incorporate forks into our model, we proceed by de-

termining the probability that a given valid block corre-

sponds to a fork: 

P (F ork ) = 1 − e −��(M) (5)

� denotes the transaction rate, and �(M) denotes the

network delay for a normalized single-transaction block

averaged over all pairs of the M miners in the net-

work. Equation (5) highlights that the fork probability in-

creases in both the transaction rate and the network de-

lay for normalized block; we establish that relationship in

Appendix A and defer associated technical details to that

section. Among other results, Appendix A demonstrates an

equivalence between modifying block sizes and modifying

block rates so that changes in the transaction rate, �, may

be analyzed without specific attention to whether such

changes are implemented by modifying the block size or

the block rate. Accordingly, we normalize the block size to

a single transaction hereafter. 

We assume that miners must agree on b ∈ N + con-

secutive blocks to regain consensus regarding the entire

blockchain’s contents when the blockchain is not already

in a state of consensus. All our results hold even for b = 1

which corresponds to assuming that consensus on the en-

tire blockchain’s content requires only agreement on the

most recent block. In general, agreement on a single block

need not imply consensus on the full chain. Thus, our find-

ings highlight that limited adoption arises for Bitcoin even

with generous assumptions regarding generating consen-

sus. 

To complete our model specification, we now clarify

our assumptions regarding �(M) , the network delay. We

model �(M) in general terms as any function that satisfies

the following two conditions: �(1) = 0 , and �′ (M) > 0 for

M > 1 . The first condition, �(1) = 0 , asserts only that a
8 Knowledge of each other is necessary because the puzzle being solved 

depends upon the entire chain of blocks to which the new block is 

being appended. For further details, the interested reader may consult 

John et al. (2022) . 
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network with one miner (i.e., a centralized network) pos- 

sesses no network delay. The second condition states that 

network delay increases as the network size increases be- 

yond a single miner. The first condition is self-evident (i.e., 

communication with oneself requires no time) whereas 

the second assumption is consistent with the random net- 

work topology of Bitcoin (see Chung and Lu, 2002 and 

Riordan and Wormald, 2010 ). 

2.4. Equilibrium 

We formally define an equilibrium as follows: 

Definition 1 . Bitcoin Equilibrium 

Our Bitcoin model is parameterized by the number of 

users, N, three parameters relating to the blockchain utility 

for each user, R 0 , R 1 and α, and the blockchain transaction 

rate, �. The N users possess types, { c i } N i =1 
, with c i ∼ U[ c , c ] . 

A Bitcoin Equilibrium is (1) an adoption cut-off, c ∗, (2) a 

function, φ(c) , that maps user types to their fees, (3) a set 

of fee realizations for the N users, { f i } N i =1 
, and (4) a min- 

ing network size, M. The equilibrium satisfies the following 

conditions: 

(i) A User Adopts Bitcoin Iff Doing So Is Optimal A user 

adopts Bitcoin (i.e., c i ≤ c ∗) if and only if doing so is 

optimal. 

(i.e., for all c ≤ c ∗ ⇔ max 
f≥0 

R 1 · (π∗N) α + R 0 − c ·
E [ W ( f, f −i )] − f ≥ 0 where π∗ = 

c ∗−c 
c −c 

) 

(ii) Equilibrium User Fees Depend Upon User Types 

User i pays a fee, f i , which depends on her type, c i . 

(i.e., for all i : f i = φ(c i ) ) 

(iii) Equilibrium Fee Function Provides Optimal Bitcoin 

Fees 

The fee function, φ(c i ) , provides optimal Bitcoin 

fees. In particular, the user maximizes her utility 

from using Bitcoin if she adopts Bitcoin (i.e., φ(c) 

solves max 
f≥0 

R 1 · (π∗N) α + R 0 − c · E [ W ( f, f −i )] − f if 

c ≤ c ∗) but pays zero fees to Bitcoin otherwise (i.e., 

φ(c) = 0 if c > c ∗) because, per Condition i, using 

Bitcoin is not optimal in that case (i.e., max 
f≥0 

R 1 ·
(π∗N) α + R 0 − c · E [ W ( f, f −i )] − f < 0 if c > c ∗). 

(iv) A User Receives Settlement After Higher Priority 

Users And When Consensus Next Obtains 

User i ’s wait time, W ( f, f −i ) , if she pays fee f de- 

pends not only on f but also on other user fees, 

f −i . More precisely, transactions are processed in 

descending fee order so that User i must wait ∑ 

j: f≤ f j 
H j with H j denoting the service time for 

User j and { j : f ≤ f j } denoting the set of users 

paying higher fees. 9 Further, User i ’s transaction is 

not settled even after her transaction enters the 

blockchain unless the blockchain is at consensus. We 

denote the (random and possibly zero) time until 

consensus next obtains by Z i . 
10 Thus, our user wait 

function becomes: 

W ( f, f −i ) = 

∑ 

j: f≤ f j 

H j + Z i 
9 Recall that we normalize the block size to one transaction per block. 
10 We detail the properties of Z i in Appendix B . 
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(v) The Mining Market Is Characterized By Free Entry 

The total expected cost of mining, β , equals the to-

tal expected profit from mining, 1 
M 

(
B + E [ 

∑ 

i 

f i ] 

)
, for

each miner. (i.e, β = 

1 
M 

(
B + E [ 

∑ 

i 

f i ] 

)
) 

Definition 1 simply summarizes the discussion from

Sections 2.1 –2.3 , condensing it into an equilibrium defini-

tion. Therefore, we do not elaborate further on our equi-

librium definition except that we note now that we as-

sume the blockchain’s stationary distribution characterizes

its initial state. 11 The subsequent result establishes equilib-

rium existence: 

Proposition 1 . Bitcoin Equilibrium 

There exists a Bitcoin Equilibrium. The following con-

ditions characterize that equilibrium with τ (�, �(M)) ≡
E [ Z 1 ] , �(�, �(M)) ≡ 1 

� + τ (�, �(M)) and M(c) ≡ B 
β

+
N (N −1) 

6 β�
(c−c ) ·(c 2 + c·c −2 c 2 ) 

( c −c ) 2 
: 

(A) φ(c) = 

N−1 
c −c 

× c 2 −c 2 

2� if c ≤ c ∗ and φ(c) = 0 otherwise. 

(B) M = M(c ∗) . 
(C) If R 1 · N 

α + R 0 < c · �(�, �(M( c ))) + (N − 1) × c + c 
2� ,

then c ∗ ∈ ( c , c ) and c ∗ solves: 

R 1 · ( c ∗−c 
c −c 

) α · N 

α + R 0 = c ∗�(�, �(M(c ∗))) + 

N−1 
c −c 

×
c 2 ∗−c 2 

2�

(D) If R 1 · N 

α + R 0 ≥ c · �(�, �(M( c ))) + (N − 1) × c + c 
2� ,

then a full adoption equilibrium arises: 

c ∗ = c ⇐⇒ π∗ = 1 

We follow prior literature and require that φ constitutes a

strictly increasing and twice differentiable function on the in-

terval ( c , c ∗) . In such a case, any equilibrium must satisfy the

above conditions, and we prove that at least one such equi-

librium exists for any set of parameters. 

Proposition 1 (A) characterizes the equilibrium fee func-

tion. This fee function is such that each user’s opti-

mal fee equals the function evaluated at the user’s type

(i.e., f i = φ(c i ) ) when each user anticipates that all other

users select fees according to the same fee function (i.e.,

for all j � = i : f j = φ(c j ) ). More formally, as required by

Definitions 1 (ii) and (iii), φ is a function that solves the

following problem: 

φ(c i ) = arg max 
f≥0 

R 1 · (π∗N) α+ R 0 −c i · E [ W ( f, φ(c −i ))] − f 

(6)

for all c i with φ(c −i ) ≡ ×
j : j � = i 

φ(c j ) so that φ(c −i ) corre-

sponds to the equilibrium fees of all users other than User

i . 

Note that the equilibrium fee function implies that any

user who prefers to use the traditional alternative instead

of the blockchain pays no fees (i.e., φ(c i ) = 0 for all c i >

c ∗). That behavior is optimal because user utility decreases

in the level of the fee so that a zero fee is trivially optimal
11 The interested reader may consult Appendix B for the explicit station- 

ary distribution and associated technical details. 

352 
when a user does not use Bitcoin. In contrast, users who 

transact via the blockchain in equilibrium (i.e., any User i 

such that c i ≤ c ∗) pay fees according to: 

φ(c i ) = 

N − 1 

c − c 
× c 2 

i 
− c 2 

2�
(7) 

which highlights that a user’s equilibrium fee increases 

in transaction demand and the user’s wait disutility 

(i.e., φ(c i ) increases in N and c i ) but decreases in the 

blockchain’s transaction rate (i.e., φ(c i ) decreases in �). 

Fees increasing in transaction demand and decreasing in 

the blockchain’s transaction rate both reflect that fees in- 

crease in congestion. Fees increasing in a user’s wait disu- 

tility reflects that a high-wait-disutility user values a re- 

duction in wait time more so than a low-wait-disutility 

user, leading the former to pay a higher fee in equilibrium. 

Proposition 1 (B) characterizes the equilibrium number 

of miners, M(c ∗) , in an equilibrium where c ∗ denotes the 

adoption cut-off. This condition arises directly from apply- 

ing the equilibrium fee function to the free entry condition 

of the mining market, given by Definition 1 v. 

Proposition 1 (C) characterizes the adoption cut-off in 

the case that there exists a user indifferent between us- 

ing the blockchain and using the traditional alternative. 

In such a case, the cut-off user (i.e., any User i such that 

c i = c ∗) gains no utility from transacting via the blockchain 

since, as discussed, we normalize the utility of the tradi- 

tional alternative to zero. In turn, this implies that the util- 

ity from transacting via the blockchain, R 1 · (π∗N) α + R 0 = 

R 1 · ( c ∗−c 
c −c 

) α · N 

α + R 0 , must equal the sum of the wait disu- 

tility, c ∗�(�, �(M(c ∗))) , and the fees paid, φ(c ∗) = 

N−1 
c −c 

×
c 2 ∗−c 2 

2� . 

Proposition 1 (D) characterizes the adoption cut-off

in the case that all users weakly prefer transacting via 

the blockchain. In this case, c ∗ = c ⇔ π∗ = 1 because then 

any User c i is below the adoption cut-off (i.e., c i ≤ c ∗ = c 

for all i ). Note that this case arises only when the ex- 

ogenous utility from transacting via the blockchain with 

full adoption, R 1 · (π∗N) α + R 0 = R 1 · N 

α + R 0 , is sufficiently 

high such that even the highest-wait-disutility user (i.e., 

any User c i such that c i = c ) weakly prefers to use the 

blockchain instead of the traditional alternative (i.e., R 1 ·
N 

α + R 0 ≥ c · �(�, �(M( c ))) + (N − 1) × c + c 
2�

). 

3. Main results 

We begin by considering Bitcoin with a fixed transac- 

tion rate (i.e., fixed �), which is consistent with Bitcoin’s 

existing design. In that context, we demonstrate that Bit- 

coin faces limited adoption ( Proposition 2 ). We then allow 

for a variable transaction rate within Bitcoin (i.e., we let 

� vary), and we demonstrate that our conclusion regard- 

ing Bitcoin facing limited adoption holds in that case also 

( Proposition 3 ). 

Proposition 2 . Limited Adoption I 

Bitcoin faces limited adoption (i.e., lim 

N→∞ 

π∗ = 0) . 

Proposition 2 provides our first main result. This re- 

sult establishes that Bitcoin’s adoption rate tends to zero 

(i.e., π∗ → 0 ) as transaction demand diverges (i.e., N → 
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N 
∞ ). Note that this result implies that Bitcoin’s adop-

tion rate is arbitrarily small for sufficiently large trans-

action demand. As such, Proposition 2 thus highlights

that Bitcoin cannot maintain a non-trivial adoption rate

if a large number of users consider Bitcoin as a feasible

option. 

We note that our formal characterization of limited

adoption is lim 

N→∞ 

π∗ = 0 . Our characterization examines

N → ∞ because our analysis aims to consider the Bitcoin

adoption rate across the globe, and, for tractability reasons,

it is easier to analyze N → ∞ rather than N being some

particular large number such as global transaction demand.

We emphasize that lim 

N→∞ 

π∗ = 0 implies that for large N,

the Bitcoin adoption rate, π∗, is close to zero hence our us-

age of lim 

N→∞ 

π∗ = 0 as the formal characterization of limited

adoption. As a practical matter, our findings establish that

Bitcoin is unlikely to become widely adopted as a payment

system across the world, as initially hoped. 

To provide further context, we explain the channel for

Proposition 2 based on our equilibrium solutions given

by Proposition 1 . Per Proposition 1 (A), an increase in

transaction demand exacerbates congestion, thereby rais-

ing equilibrium fees (i.e., φ(c) increases in N). Then, per

Proposition 1 (B), that increase in fees generates an in-

crease in the number of miners (i.e., M increases in N).

The relationship between fees and the number of min-

ers arises because fees correspond to revenue for min-

ers, and the mining network is characterized by free entry

so that increased fees induce entry of miners. Finally, per

Proposition 1 (C), Bitcoin’s adoption rate declines as the

equilibrium number of miners increases (i.e., π∗ decreases

in M). This decrease in the adoption rate arises because

the increase in the mining network size implies a com-

mensurate increase in network delay which, in turn, pro-

longs user wait times (i.e., �(�, �(M )) increases in M per

Lemma 10 ). Those increased wait times then reduce the

adoption rate. Proposition 2 establishes that the adoption

rate becomes arbitrarily small (i.e., π∗ → 0 ) as transaction

demand becomes arbitrarily large (i.e., N → ∞ ), thereby

establishing limited adoption. 

A natural response to the limited adoption thus far de-

scribed might be to suggest Bitcoin adopt a flexible trans-

action rate that increases with transaction demand (i.e.,

Bitcoin should vary � with N). In fact, that proposed solu-

tion is employed in traditional settings to resolve a similar

problem. For instance, in the introduction, we discuss the

example of a grocery store that could experience height-

ened demand but overcomes the problem by increasing

its processing rate. In particular, when there exists an in-

crease in customers checking out of the grocery store (i.e.,

heightened demand), the store responds by increasing the

number of cashiers (i.e., increasing the processing rate).

In the grocery store setting, the described response keeps

wait times low and thereby avoids customers abandon-

ing the store. With that example as motivation, we sub-

sequently explore the implications of Bitcoin allowing in-

creased transaction rates. In contrast to the grocery store

setting, we find that this policy fails to resolve the prob-

lem within the Bitcoin setting. Proposition 3 formalizes

this point: 
353 
Proposition 3 . Limited Adoption II 

Suppose that Bitcoin’s transaction rate, �N , varies with 

transaction demand, N. Then, even in such a case, Bitcoin 

faces limited adoption (i.e., lim 

N→∞ 

π∗ = 0) . 

Proposition 3 allows that Bitcoin’s transaction rate, 

�, depends upon transaction demand, N, and we here- 

after acknowledge that dependence by denoting the trans- 

action rate as �N . Even allowing for such dependence, 

Proposition 3 establishes that Bitcoin faces limited adop- 

tion. 

To understand Proposition 3 , we highlight that our 

model implies the following decomposition for User i ’s ex- 

pected equilibrium wait time, E i [ W ( f i , f −i )] , with E i [ ·] de- 

noting an expectation with respect to User i ’s information 

set: 

E i [ W ( f i , f −i )] = 

(N − 1)(c ∗ − c i ) + 1 

�N ︸ ︷︷ ︸ 
T raditional Wait T ime 

+ τ (�N , �(M)) ︸ ︷︷ ︸ 
Consensus Wait T ime 

(8) 

Equation (8) states that the expected wait time of each 

user decomposes into two terms: the traditional wait time 

and the consensus wait time. We refer to the first term 

as the traditional wait time because this component would 

appear even for a traditional centralized payment system. 

In contrast, the second term, which we refer to as consen- 

sus wait time, would not appear for a centralized payment 

system and therefore distinguishes Bitcoin from a central- 

ized payment system. 

The traditional wait time refers to the sum of the ex- 

pected wait time for all users served before User i and 

the expected service time for User i . Importantly, the tradi- 

tional wait time decreases in the transaction rate and van- 

ishes as the transaction rate diverges so that it can be kept 

arbitrarily small by adjusting the transaction rate. To in- 

tuit this point, we note that the maximal traditional wait 

equals N 
�N 

because even the adopting user who pays the 

lowest fee waits for no more than N − 1 other users. As an 

example, if N = 10 and �N = 10 transactions per second, 

then all users complete their traditional wait time within 

1 s. If there is an increase in transaction demand with the 

number of potential users becoming 10 0 0 (i.e., N = 10 0 0 ) 

then increasing the transaction rate to 10 0 0 transactions 

per second (i.e., �10 0 0 = 10 0 0 ) maintains the 1 s upper 

bound for the traditional wait time. More generally, the 

traditional wait time is bounded above by ε > 0 if �N = 

N 
ε . Thus, as users for a centralized payment system face 

only this traditional wait time, a centralized payment sys- 

tem may avoid limited adoption simply by increasing its 

transaction rate to meet demand (i.e., increasing �N as N

grows). 

However, unlike a centralized payment system, Bit- 

coin cannot overcome limited adoption by increasing its 

transaction rate as shown by Proposition 3 . That result 

arises because Bitcoin requires consensus among miners 

which, in turn, introduces an additional component to wait 

time that we refer to as the consensus wait time (i.e., 

τ (� , �(M)) appears in Eq. (8) ). In fact, as we show 
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subsequently, the consensus wait time, τ (�N , �(M)) , be-

comes prohibitive as the transaction rate increases: 

Proposition 4 . Consensus Wait Time Diverges with Transac-

tion Demand 

Suppose that Bitcoin adjusts its transaction rate to keep

pace with transaction demand (i.e., lim 

N→∞ 

�N = ∞ ) . Then, the

Consensus Wait Time, τ (�N , �(M)) , diverges as demand di-

verges, (i.e., lim 

N→∞ 

τ (�N , �(M)) = ∞ ) . 

To provide some intuition regarding Proposition 4 , we

return to Eq. (5) which establishes that the probability

a block corresponds to a fork equals 1 − e −��(M) . 12 Ac-

cordingly, a higher transaction rate, �, implies a higher

fork probability and thus a lower probability of con-

sensus. In turn, a lower probability of consensus on a

given block implies a longer consensus wait time. In

fact, Proposition 4 highlights that arbitrarily large transac-

tion rates generate arbitrarily large consensus wait times.

Thus, expected wait times diverge as transaction rates be-

come arbitrarily large (i.e., lim 

N→∞ 

E i [ W ( f i , f −i )] = ∞ when

lim 

N 
�N = ∞ as per Eq. (8) ) so that limited adoption arises

even when transaction rates keep pace with transaction

demand per Proposition 3 . 

The implication of our results as a whole is that Bit-

coin faces a dilemma in the face of heightened transaction

demand. Either Bitcoin keeps transaction rates fixed or it

varies transaction rates with transaction demand. If Bitcoin

keeps transaction rates fixed (in line with Bitcoin’s cur-

rent design) then Bitcoin faces prohibitive traditional wait

times and, in turn, limited adoption per Proposition 2 . Al-

ternatively, if Bitcoin varies transaction rates with trans-

action demand then the consensus wait time becomes

prohibitive thereby also generating limited adoption per

Proposition 3 . 

We have noted that a novelty of our analysis is in-

corporating network delay into an economic model of

blockchain. To emphasize the importance of incorpo-

rating this real-world feature that constitutes a prac-

tical constraint for Bitcoin, we provide the following

result: 

Proposition 5 . No Adoption Problem Without Network Delay 

Widespread adoption (i.e., lim 

N→∞ 

π∗ > 0) can be obtained

within arbitrarily large networks (i.e., lim 

N→∞ 

M = ∞ ) under the

counterfactual assumption of no network delay (i.e., �(M) =
0 for all M) . 

Proposition 5 establishes that Bitcoin could overcome

limited adoption if it did not possess network delay. In-

tuitively, an absence of network delay implies that forks

would never arise (i.e., P (F ork ) = 0 in Eq. (5) if �(M) =
0 ). In such a case, Bitcoin would always be in a state

of consensus (i.e., τ (�N , �(M)) = τ (�N , 0) = 0 ) and thus

could overcome limited adoption in a manner similar

to a centralized payment system. Nonetheless, Bitcoin

possessing no network delay is counterfactual so that
12 Appendix A provides details regarding Eq. (5) . 
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Proposition 5 should be interpreted as a result that clar- 

ifies economic limitations intrinsic to Bitcoin. 

4. Finite N

Our main findings, Propositions 2 and 3 , provide limit- 

ing results (i.e., N → ∞ ) to establish implications for adop- 

tion when demand is large (i.e., large N). In this section, we 

supplement those findings with results that hold for finite 

N. In particular, Section 4.1 demonstrates that there exists 

a finite adoption level for all N (i.e., sup 

N∈ N 
π∗N < ∞ ). More- 

over, Section 4.2 clarifies that the referenced bound falls 

below transaction volumes for traditional payment systems 

for any reasonable model parameters. The implication of 

our findings is thus that Bitcoin is unlikely to replace tra- 

ditional centralized payment systems. 

4.1. Absolute bound on adoption level 

There exists a bound on Bitcoin’s adoption level that 

applies uniformly for all N: 

Proposition 6 . Finite Bound on Adoption Level 

There exists a finite bound on the total adoption level that 

applies uniformly across all levels of transaction demand. (i.e., 

sup 

N∈ N 
π∗N < ∞ ) . 

Proposition 6 arises because an increase in the adoption 

level, π∗N, implies an increase in the endogenous fee level 

for the marginal user, φ(c ∗) . In turn, any adoption level 

beyond a particular finite bound cannot arise in equilib- 

rium because any such adoption level implies a fee level 

that is too excessive to be consistent with such adoption 

levels. 

More formally, Proposition 1 (C) implies the following: 

R 1 · ( c ∗ − c 

c − c 
) α · N 

α + R 0 ︸ ︷︷ ︸ 
Ut ilit y F rom Bitcoin 

≥ N − 1 

c − c 
× c 2 ∗ − c 2 

2�︸ ︷︷ ︸ 
Marginal User F ee 

(9) 

which states that the endogenous utility from using Bitcoin 

must exceed the fee paid for the marginal user. Then, using 

Eq. (2) and applying some algebra yields: 

R 1 + 

R 0 

(π∗N) α
≥ N − 1 

N 

× c ∗ + c 

2�
× (π∗N) 1 −α (10) 

which reveals that arbitrarily large adoption levels can- 

not arise in equilibrium. In particular, letting the adop- 

tion level grow arbitrarily (i.e., π∗N → ∞ ) in Eq. (10) yields 

R 1 ≥ ∞ , which delivers a contradiction since user utility 

from transacting via Bitcoin is finite (i.e., R 0 , R 1 ∈ R + ). Intu- 

itively, arbitrarily large adoption levels generate arbitrarily 

large fees such that only an infinite utility from using Bit- 

coin (i.e., R 1 = ∞ ) is consistent with arbitrarily large adop- 

tion levels in equilibrium. 

Proposition 6 takes the transaction rate as fixed (i.e., �

is a fixed parameter), but that assumption is not neces- 

sary for establishing a bound on the Bitcoin adoption level. 

More explicitly, our next result generalizes Proposition 6 to 
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the case that the transaction rate varies with transaction

demand: 

Proposition 7 . Finite Bound on Adoption Level II 

Suppose that Bitcoin’s transaction rate, �N , varies with

transaction demand, N. Then, even in such a case, Bit-

coin faces a finite bound on its adoption level that ap-

plies uniformly across all levels of transaction demand. (i.e.,

sup 

N∈ N 
π∗N < ∞ ) . 

Proposition 7 arises for a similar reason as

Proposition 3 . In particular, Bitcoin faces a dilemma

in the face of heightened transaction demand (i.e., when

N is large). Either Bitcoin keeps transaction rates too low

such that the congestion from fees ensures a finite bound

on its adoption level (as per Proposition 6 ) or Bitcoin in-

creases its transaction rate sufficiently fast such that wait

times become prohibitive due to the need for consensus,

also generating a finite bound on its adoption level. More

formally, Proposition 1 (C) implies: 

R 1 ·
(

c ∗ − c 

c − c 

)α

· N 

α + R 0 ︸ ︷︷ ︸ 
Ut ilit y F rom Bitcoin 

≥ c ∗�(�N , �(M)) ︸ ︷︷ ︸ 
Marginal Wait Disut ilit y 

(11)

which states that the endogenous utility from using Bitcoin

must exceed the disutility from waiting incurred by the

marginal user. Then, applying Eq. (2) and �(�N , �(M)) ≡
1 

�N 
+ τ (�N , �(M)) ≥ τ (�N , �(M)) to Eq. (11) yields: 

R 1 · (π∗N) α + R 0 ≥ c ∗τ (�N , �(M)) (12)

and dividing through by (π∗N) α implies: 

R 1 + 

R 0 

(π∗N) α
≥ c ∗τ (�N , �(M)) 

(π∗N) α
(13)

In our proof for Proposition 7 , we establish that the

transaction rate growing sufficiently fast to avoid pro-

hibitive fees implies that 
c ∗τ (�N , �(M)) 

(π∗·N) α
→ ∞ as the adop-

tion level grows arbitrarily large (i.e., π∗N → ∞ ). Con-

sequently, if the transaction rate grows sufficiently fast

to avoid prohibitive fees, Eq. (13) implies R 1 ≥ ∞ , which

is a contradiction and thereby precludes arbitrarily large

adoption levels. Alternatively, if the transaction rate does

not grow sufficiently fast to overcome prohibitive fees,

then the level of the fees themselves preclude arbitrarily

large adoption levels akin to the intuition given earlier for

Proposition 6 . 

4.2. Practical adoption limits 

We provide context regarding our previous analysis

with the following result: 

Proposition 8 . Practical Limits of Adoption 

Suppose that Bitcoin were to employ a transaction rate

sufficient to process 150 million transactions per day and that

Bitcoin’s network delay were bounded below by empirical es-

timates given in Croman et al. (2016) . Then, the following re-

sults hold: 

(A) Each block would correspond to a fork with over 99%

probability and the blockchain would be in the state of

a fork with over 99% probability. 
355 
(B) As a consequence, the expected time for transaction 

settlement would become prohibitive. More explicitly, 

the expected time for transaction settlement would ex- 

ceed one year. 

Proposition 8 clarifies that the transaction rate neces- 

sary for Bitcoin to achieve VISA’s US transaction volume 

(i.e., 150 million transactions per day) implies a frequency 

of forks such that user wait times become prohibitively 

lengthy irrespective of model preference parameters (i.e., 

R 0 , R 1 , α, c , c ). In turn, any reasonable model parameters 

are inconsistent with Bitcoin achieving such a transaction 

volume and thus Bitcoin faces a practical limit to adoption 

that renders it unlikely to compete with traditional pay- 

ment systems. 

To understand Proposition 8 , note that Bitcoin achiev- 

ing an increased transaction volume would require Bit- 

coin employing an increased transaction rate but an in- 

creased transaction rate would imply a higher fork prob- 

ability ( Proposition 8 (A)). The higher fork probability, in 

turn, would imply a higher expected wait time due to 

the need to achieve consensus on transaction settlement 

( Proposition 8 (B)). While particular preference parameters 

might be consistent with arbitrarily long settlement times 

(e.g., R 0 , R 1 = ∞ ), we deem such model parameters as un- 

reasonable because we do not consider it plausible that 

users would be willing to wait arbitrarily long for trans- 

action settlement of casual payments. 

More concretely, Eq. (5) , which determines the fork 

probability, is central to Proposition 8 . In particular, while 

current transaction rates for Bitcoin imply a near-zero fork 

probability, increasing Bitcoin’s transaction rate to tolerate 

the demand of a traditional payment system would im- 

ply that most blocks would result in a fork. Consequently, 

most Bitcoin transactions would then be subjected to an 

elongated settlement process, thereby undermining adop- 

tion. We emphasize that a particular model-implied wait- 

ing time computation is not as relevant as the order of 

magnitude for wait times being unreasonably large when- 

ever Bitcoin’s transaction rate is expedited to tolerate large 

transaction demands. 

To provide some practical context regarding the impli- 

cations of persistent forks upon Bitcoin adoption, we turn 

to the only well-known example of a persistent Bitcoin 

fork. That fork demonstrates that persistent forks are a sig- 

nificant threat to widespread adoption in practice just as 

our model predicts. To provide more detail, a fork arose 

on the Bitcoin blockchain in March 2013 for technical rea- 

sons, but that fork was not resolved quickly so that it was 

persistent in a similar sense that forks generated in our 

model due to high transaction rates are persistent. In re- 

sponse to the fork, the largest cryptocurrency exchange at 

the time, Mt. Gox, suspended Bitcoin transactions, induc- 

ing a decline in Bitcoin usage. While Mt. Gox eventually 

restored Bitcoin transactions, the cause of the March 2013 

fork was known to be idiosyncratic and thus not indicative 

of such a fork occurring in the future. In contrast, the forks 

that would arise if Bitcoin’s transaction rate became too 

rapid are not idiosyncratic as they would arise regularly 

per our formal analysis. Mt. Gox’s reaction to the March 

2013 fork thus suggests that forks arising from an expe- 
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dited Bitcoin transaction rate would undermine adoption

more generally, which is consistent with our findings. 13 

5. Overcoming limited adoption 

Although our results establish limited adoption for Bit-

coin, our results do not imply that Bitcoin’s adoption rate

cannot be increased with centralization of Bitcoin mining.

Moreover, our results do not imply that more recent eco-

nomic designs of blockchains face limited adoption. We

discuss these points, in turn, in Sections 5.1 and 5.2 . 

5.1. Bitcoin centralization 

Lehar and Parlour (2020) and Cong et al. (2021a) high-

light that Bitcoin mining markets are partially centralized

in the sense that the majority of blocks are produced by

a few mining pools. While such partial centralization does

not preclude limited adoption (see Propositions 2 and 3 ),

it does enable Bitcoin to achieve higher adoption rates for

any finite level of transaction demand. We formalize this

point with the following result: 

Proposition 9 . Partial Centralization of Mining Markets 

Let πC ∗ denote the adoption rate of Bitcoin if the network

delay function is given by �C (M) . Let πD ∗ denote the adop-

tion rate of Bitcoin if the network delay function is given by

�D (M) . We assume that �C (M) ≤ �D (M) for all M so that

the former case reflects a (relatively) centralized mining mar-

ket in which information propagates more quickly. Then, the

adoption rate for the relatively centralized mining market ex-

ceeds that of the adoption rate for the relatively decentralized

mining market (i.e., πC ∗ ≥ πD ∗ ) . 

Recall that M refers to the number of computer pro-

cessors irrespective of the mining market structure. Since

partial centralization of mining entails many such proces-

sors being controlled by the same entity, our model re-

flects partial centralization through a reduction in the net-

work delay function (i.e., �C (M) ≤ �D (M) for all M). In

that context, Proposition 9 demonstrates that a relatively

centralized mining market implies a higher adoption rate

than a more decentralized mining market. Intuitively, a

relatively centralized mining market reduces not only the

network delay but also the probability of a fork. In turn,

a reduced fork probability implies a reduction in the ex-

pected settlement time for any transaction and thereby en-

ables a higher equilibrium adoption rate. 

5.2. Beyond Bitcoin 

Our final result provides general context regarding over-

coming limited adoption: 

Proposition 10 . Overcoming Limited Adoption 

Suppose that the fork probability is given as follows: 

P (F ork ) = p F (�, �(M)) 

where p F : R + × R + �→ [0 , 1] is an arbitrary function. 
13 For additional details regarding the March 2013 fork, the interested 

reader may consult Biais et al. (2019) or Saleh (2021) . 
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If the fork probability is bounded away from unity 

(i.e., sup 

�, �
p F (�, �) < 1) , then widespread adoption (i.e., 

lim 

N→∞ 

π∗ > 0) can be obtained in equilibrium even with an ar- 

bitrarily large network (i.e., lim 

N→∞ 

M = ∞ ) . 

Proposition 10 clarifies that limited adoption can be 

overcome if the fork probability is bounded away from 

unity. This result arises because the fork probability be- 

ing bounded away from unity implies that the consensus 

wait time is bounded above and eventually decreases in 

the blockchain’s transaction rate (see Lemma 7 ). In turn, 

a sufficiently large increase in the transaction rate reduces 

both consensus wait times and overall wait times, thereby 

enabling widespread adoption. 

We conclude by discussing some prominent blockchain 

proposals that seek to improve upon Bitcoin. We discuss 

those proposals in the context of this paper’s findings. 

5.2.1. An expedited transaction rate 

Several proposals aim to improve upon Bitcoin by em- 

ploying a design identical to Bitcoin except with an expe- 

dited transaction rate. Such proposals are typically imple- 

mented either by increasing block sizes (e.g., Bitcoin Cash) 

or by increasing block rates (e.g., Litecoin). Our analysis 

indicates that such proposals do not succeed at overcom- 

ing limited adoption. In particular, Appendix A establishes 

that the fork probability approaches unity as the transac- 

tion rate diverges irrespective of whether the transaction 

rate diverges due to an increase in the block rate or an in- 

crease in the block size. Consequently, the consensus wait 

time becomes prohibitive as the transaction rate diverges 

irrespective of the implementation method for the increase 

in the transaction rate. In turn, expediting the transaction 

rate does not resolve the limited adoption problem as per 

Proposition 3 . 

While increasing the blockchain’s transaction 

rate does not resolve the limited adoption problem, 

Proposition 10 indicates that limited adoption may be 

overcome by refining the blockchain’s design to enable 

a high transaction rate without a high fork probability. 

Several blockchain proposals aim for such a refinement. 

The remainder of this section focuses on such proposals. 

5.2.2. Bitcoin NG 

Bitcoin NG, put forth by Eyal et al. (2015) , confers 

authority to a single miner to add transactions to the 

blockchain for a period of time known as an epoch . This 

protocol differs from Bitcoin in that Bitcoin confers such 

authority only for a single block. The described modifica- 

tion enables Bitcoin NG to achieve a lower fork probability 

because a fork cannot arise within an epoch once the en- 

tire network has learned which particular miner has the 

authority to add blocks during the epoch. 

Bitcoin NG confers authority to a miner to add trans- 

actions in the same manner that Bitcoin selects a block to 

be added to the blockchain. In particular, in both cases, a 

miner must create a block which solves a computationally 

intensive puzzle to receive the authority to add transac- 

tions. In Bitcoin’s case, the transactions that can be added 

to the blockchain must be included directly on the block 
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that solves the puzzle. In contrast, in Bitcoin NG’s case,

the block that solves the puzzle identifies a miner who

may add transactions to the blockchain for the duration of

the epoch, and no other miner may add transactions dur-

ing the epoch. Once the epoch concludes, Bitcoin NG con-

fers authority to another miner to add transactions for the

subsequent epoch in the same manner as for the previous

epoch. 

Intuitively, Bitcoin NG achieves a reduction in the fork

probability by implementing a temporary centralization of

authority. More explicitly, each epoch corresponds to a pe-

riod in which a single miner has a monopoly with regard

to adding transactions to the blockchain. As a consequence,

a fork cannot arise within an epoch for the same reason

that a fork would not arise in general in a centralized set-

ting. It is noteworthy that Bitcoin NG may maintain a fork

probability bounded away from unity even when expand-

ing its transaction rate by extending the duration of each

epoch. 

5.2.3. Modern proof-of-stake protocols 

The previously referenced concept of dividing time into

epochs and pre-specifying authority to add transactions

within the epoch has been used in many recent blockchain

proposals. A key distinguishing factor between some of

those recent proposals and Bitcoin NG is that recent pro-

posals generally do not confer authority on the basis of

computational puzzles. Rather, most recent proposals con-

fer such authority on the basis of lotteries over outstanding

cryptocurrency units (or a subset of those units) with the

lottery winners receiving the authority to add blocks to the

blockchain and the blocks including transactions. Such re-

cent proposals are referred to as employing a Proof-of-Stake

(PoS) protocol because an agent’s likelihood of receiving

the authority to add blocks depends upon her stake where

stake refers to cryptocurrency holdings. 14 

The particular concept of having a single agent deter-

mine all transactions within an epoch has been employed

by some PoS blockchains (see, e.g., Pass and Shi, 2018 ), but

many others employ a further modification that entails di-

viding each epoch into slots where each slot corresponds

to a single block. In such a case, each slot is assigned to

an agent based on independent lotteries, and all lotteries

for slots within a particular epoch occur at the beginning

of that epoch. This process of specifying which agent may

add a block in each slot of the epoch keeps the fork proba-

bility low because of the lack of ambiguity regarding which

agent may add a block in a particular slot. Moreover, the

number of slots within each epoch may be increased when

increasing the transaction rate to keep the fork probability

bounded away from unity. 

5.2.4. Permissioned blockchains 

Another method to enable high transaction rates with-

out inducing a high fork probability is to specify the under-

lying blockchain as a permissioned blockchain. A permis-

sioned blockchain differs from Bitcoin and PoS blockchains
14 A discussion of PoS is beyond the scope of this paper. The interested 

reader may consult Saleh (2021) for details. 
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in that the set of agents who may participate in the pro- 

cess of creating blocks is set in an exogenous fashion. 

Moreover, this set is typically kept to a small number, and 

an efficient process is specified for the agents within the 

set to arrive at consensus on blocks. 

One process frequently used for generating consensus 

in a permissioned blockchain is Practical Byzantine Fault 

Tolerance (PBFT). PBFT, introduced by Castro et al. (1999) , 

entails one agent being designated as the leader where 

only the leader can propose new blocks. Consequently, a 

permissioned blockchain with PBFT can operate at high 

transaction rates while avoiding a high fork probability. 

6. Conclusion 

Bitcoin was created with the ambition of becoming 

a widely-adopted decentralized payment system. To date, 

Bitcoin has fallen short of that goal. Our paper examines 

Bitcoin’s goal in the context of its design and finds the for- 

mer incompatible with the latter. In particular, we find that 

limited adoption is an equilibrium outcome for Bitcoin. 

Nonetheless, we emphasize that our work does not 

imply limited adoption universally across all blockchains. 

Rather, our results apply only to Bitcoin and similar 

blockchains, thereby highlighting the need for economic 

analysis of blockchains other than Bitcoin. As discussed 

within Section 5.2 , some blockchain proposals that show 

promise to overcome limited adoption include Bitcoin 

NG, modern Proof-of-Stake protocols and Permissioned 

blockchains. 15 We hope that researchers will extend our 

framework to formally examine those ideas in the future. 
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Appendix A. Fork probability 

As explained in Section 2.3 , a valid block produced by

some Miner i does not correspond to a fork if no blocks

inconsistent with it are produced. Therefore: 

P (F ork ) = 1 − P ( 
⋂ 

j 

{ Miner j does not produce a v alid 

inconsistent block } ) (A.1)

Recall that Miner j produces a valid block inconsistent

with Miner i ’s block if and only if Miner j produces a valid

block before receiving news of Miner i ’s block. Accordingly,

for Miner j’s next valid block to be consistent with Miner

i ’s valid block, Miner j must not generate a valid block in

the time that Miner i takes to communicate her block to

Miner j. Decker and Wattenhofer (2013) demonstrate that

this time, also known as the network delay between Min-

ers i and j, depends upon the amount of information being

sent and is approximately linear in the size of information

being sent. Thus, letting σ denote the block size (i.e., num-

ber of transactions per block) and �i, j denote the network

delay between Miners i and j for a block with one trans-

action, we have that: 

Network Delay Between Miners i and j = σ × �i, j (A.2)

Further, letting X j denote the time until Miner j pro-

duces her next valid block (starting from the time at which

Miner i produces a valid block), we also have that: 

{ Miner j does not produce a v al id inconsistent bl ock } = 

{ X j > σ × �i, j } (A.3)

It is well known that each miner’s block production

process is independent (see, e.g., Narayanan et al., 2016 )

so that Eqs. (A .1) –(A .3) imply: 

P (F ork ) = 1 −
∏ 

j 

P ({ X j > σ × �i, j } ) (A.4)

As discussed within Sections 2.2 and 2.3 , each miner

produces valid blocks according to a Poisson process and

each miner corresponds to a computer processor of com-

parable hashing power. Thus, X j is an exponential ran-

dom variable with some parameter λ > 0 that denotes

the rate at which each miner produces valid blocks, and

Eq. (A.4) becomes: 

P (F ork ) = 1 −
∏ 

j 

e −λ×σ×�i, j (A.5)

Then, after some algebra, we have that: 

P (F ork ) = 1 − e 
−λ×M×σ× 1 

M 

∑ 

j 

�i, j 

(A.6)
358 
Recall that λ denotes the block rate for an individ- 

ual miner and M denotes the total number of miners so 

that ρ ≡ λ × M denotes the block rate for the entire min- 

ing network. Additionally, since σ denotes the number of 

transactions per block, � ≡ ρ × σ = λ × M × σ equals the 

blockchain’s transaction rate. Finally, as �i, j denotes the 

network delay between Miners i and j for a normalized 

single-transaction block, �(M) ≡ 1 
M 

∑ 

j 

�i, j denotes the av- 

erage network delay for a normalized single-transaction 

block. 16 Then, a simple re-writing of Eq. (A.6) delivers 

Eq. (5) : 

P (F ork ) = 1 − e −��(M) (A.7) 

Equivalence between Block Rates, ρ , and Block Sizes, σ

Our results establish an equivalence between modifying 

block rates, ρ , and modifying block sizes, σ . In particular, 

recall that � = ρ × σ so that Eq. (A.7) implies: 

P (F ork ) = 1 − e −ρ×σ×�(M) (A.8) 

Formally, the block rate, ρ , and the block size, σ , enter 

symmetrically within Eq. (A.8) so that a change in the for- 

mer produces identical implications as a change in the lat- 

ter. Accordingly, we may study implications of varying the 

blockchain transaction rate, � = ρ × σ , upon fork proba- 

bilities without specific attention to whether the changes 

in the transaction rate are achieved by modifying the block 

rate, ρ , or the block size, σ . 

To provide some intuition for this point, we remind the 

reader that a fork arises when some Miner j produces a 

valid block before receiving news of the prior valid block 

by Miner i . Thus, intuitively, a fork arises for one of two 

reasons: either Miner j produces a valid block too quickly, 

or Miner i ’s block requires too long to communicate to the 

network. Increasing the block rate, ρ , makes a fork more 

likely due to the former reason, whereas increasing the 

block size, σ , makes the fork more likely due to the latter 

reason. In particular, a faster block rate implies that each 

miner produces blocks at a faster rate (i.e., ρ ↑⇒ λ = 

ρ
M 

↑ ) 

whereas a larger block size, σ , implies that Miner i ’s block 

takes longer to communicate (i.e., σ ↑⇒ σ × �i, j ↑ ). In the 

former case, the fork becomes more likely because the 

likelihood that some Miner j produces a valid block too 

quickly increases; in the latter case, the fork becomes more 

likely because the time necessary for Miner i to communi- 

cate with each Miner j � = i elongates. 

Appendix B. CTMC Blockchain model 

We model the blockchain as a Continuous Time Markov 

Chain (CTMC), { X t } t≥0 , with states x ∈ X ≡ { 0 , 1 , . . . , b} . In

our model, any state x < b corresponds to a state in which 

the blockchain is in the midst of a fork whereas the state 

x = b corresponds to the blockchain being in a state of con- 

sensus. Recall that from a state of consensus (i.e., x = b), 
j 
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the blockchain enters a fork if there are multiple blocks

generated at a given height. We denote the blockchain

state immediately after there is a disagreement on the

most recent block by x = 0 < b. As discussed in Section 2.3 ,

regaining consensus requires agreement on b consecutive

blocks, and we keep track of this transition through the

blockchain’s state by incrementing the blockchain state by

one with each consecutive block on which there is agree-

ment until the blockchain regains consensus (i.e., x = b) at

which point the state remains at x = b until there is dis-

agreement on a block. As at any other time, if there is a

disagreement on a block during the aforementioned tran-

sition period or after regaining consensus, the blockchain

state then changes to x = 0 . 

Formally, the CTMC rate matrix, Q ∈ R 

X×X , character-

izes our model. For exposition, we define p(x, y ) = 1 − e −xy

and abuse notation by setting p ≡ p(�, �) = 1 − e −�� ∈
(0 , 1) . Note that p corresponds to the fork probability (see

Eq. (5) ). Then, since blocks arrive at rate � and only

the states x = 0 and x = b can transition back to them-

selves, we have that ∀ x ∈ X/ { 0 , b} : Q x,x = −�. Moreover,

since there is disagreement over any block with probability

p and the blockchain transitions to state x = 0 upon such

disagreement, we have that ∀ x ∈ X/ { 0 } : Q x, 0 = �p. Simi-

larly, since the state of the blockchain increments from x

to x + 1 until x = b whenever there is agreement on a block

(which occurs with probability 1 − p for any given block),

we have that ∀ x ∈ X/ { b} : Q x,x +1 = �(1 − p) . Finally, triv-

ially, we have that Q b,b = −�p, Q 0 , 0 = −�(1 − p) and all

other entries of Q equal 0. 

Lemma 1 . Stationary Distribution 

{ πx } x ∈ X corresponds to the unique stationary distribution

with ∀ x < b : πx = p(1 − p) x and πb = (1 − p) b 

Proof . Any stationary distribution, ˜ π ∈ R 

X , must satisfy

˜ πQ = 0 . The result follows from algebra. �

For exposition, we uniformize our CTMC. We let { Y t } t∈ N
denote the associated Discrete Time Markov Chain (DTMC)

and P ∈ R 

X×X denote the associated transition matrix.

Then, X t = Y N(t) with { N(t) } t≥0 being a Poisson Process

with rate �. 

Lemma 2 . Consensus Wait Times 

We define T b ≡ inf { t ∈ N : Y t = b} . Then, the expected

block heights until fork resolution, s x = E [ T b | Y 0 = x ] , con-

ditional upon initial state, x ∈ X, satisfies ∀ x ∈ X : s x =
( 1 + s 0 p ) 

1 −(1 −p) b−x 

p ∀ x ∈ X so that s 0 = 

1 −(1 −p) b 

p(1 −p) b 
. 

Proof . We prove the result by induction. s k − j =
(1 + s 0 p) 

∑ j−1 
i =0 

(1 − p) i holds for j = 1 by definition. Then,

s k −( j+1) = 1 + (1 − p) s k − j + ps 0 = (1 + s 0 p) 
∑ ( j+1) −1 

i =0 
(1 −

p) i with the last equality following from the inductive

hypothesis. The conclusion then follows from algebra. �

Subsequently, we provide results useful for establishing

results within the body of our manuscript, which are sub-

sequently proved in Appendix C . 

Lemma 3 . Monotone Consensus Wait Times 

∀ x ∈ X/ { b} : s x > s x +1 ≥ 0 
359 
Proof . We prove the result by induction. By definition, ∀ x ∈ 

X/ { b} : s x = 1 + (1 − p) s x +1 + ps 0 so that s 0 > s 1 follows by

taking x = 0 . Then, by induction, s x = 1 + (1 − p) s x +1 + 

ps 0 > 1 + (1 − p) s x +1 + ps x which implies s x > s x +1 as de- 

sired. ∀ x ∈ X/ { b} : s x +1 ≥ 0 follows from s b = 0 . �

Hereafter, we define ∀ x ∈ X : s x (�, �) ≡ s x (p) ≡
s x (p(�, �)) and abuse notation by using s x to 

mean the multivariate function. Similarly, we define 

∀ x ∈ X : πx (�, �) ≡ πx (p) ≡ πx (p(�, �)) and abuse 

notation by using πx to mean the multivariate function. 

Lemma 4 . Monotone Consensus Wait Times Derivatives 

∀ x ∈ X/ { b} : ds x 
dp 

≡ d 
dp 

[ s x (p)] > 

ds x +1 

dp 
≡ d 

dp 
[ s x +1 (p)] ≥ 0 

Proof . We prove the result by induction. By definition, 

∀ x ∈ X/ { b} : s x = 1 + (1 − p) s x +1 + ps 0 so that s 0 = 

1 
1 −p +

s 1 and thus 
ds 0 
dp 

= 

1 
(1 −p) 2 

+ 

ds 1 
dp 

> 

ds 1 
dp 

. Then, s x = 1 + (1 −
p) s x +1 + ps 0 implies ds x 

dp 
= (1 − p) 

ds x +1 

dp 
− s x +1 + p 

ds 0 
dp 

+ s 0 . 

Then, Lemma 3 gives that s 0 > s x +1 and the inductive hy- 

pothesis gives that 
ds 0 ) 
dp 

> 

ds x 
dp 

so that (1 − p) 
ds x +1 

dp 
− s x +1 + 

p 
ds 0 
dp 

+ s 0 > (1 − p) 
ds x +1 

dp 
+ p ds x 

dp 
so that ds x 

dp 
> (1 − p) 

ds x +1 

dp 
+ 

p ds x 
dp 

. The last equation further implies ds x 
dp 

> 

ds x +1 

dp 
, which 

provides the inductive step and thereby establishes ds x 
dp 

> 

ds x +1 

dp 
for all x ∈ X/ { b} . To complete the proof, we must 

demonstrate that 
ds x +1 

dp 
≥ 0 for all x ∈ X/ { b} . This follows 

immediately from s b = 0 , which itself follows from the def- 

inition of s b . More precisely, since we already have ds x 
dp 

> 

ds x +1 

dp 
for all x ∈ X/ { b} , then, for all x ∈ X/ { b} , ds x +1 

dp 
≥ ds b 

dp 
= 

0 . �

Lemma 5 . Monotone Consensus Wait Times Derivatives II 

∀ x ∈ X/ { b} : ∂s x 
∂�

> 

∂s x +1 

∂�
≥ 0 , ∂s x 

∂�
> 

∂s x +1 

∂�
≥ 0 

Proof . For all x ∈ X/ { b} , ∂s x 
∂�

= 

ds x 
dp 

∂ p 
∂�

= 

ds x 
dp 

�e −��. In turn: 

∀ x ∈ X/ { b} : ∂s x 

∂�
> 

∂s x +1 

∂�
≥ 0 ⇐⇒ 

ds x 

dp 
> 

ds x +1 

dp 
≥ 0 

so that ∀ x ∈ X/ { b} : ∂s x 
∂�

> 

∂s x +1 

∂�
≥ 0 follows from Lemma 5 . 

The proof for the second half of the lemma is similar. 

More explicitly, for all x ∈ X/ { b} , ∂s x 
∂�

= 

ds x 
dp 

∂ p 
∂�

= 

ds x 
dp 

�e −��. 

In turn: 

∀ x ∈ X/ { b} : ∂s x 

∂�
> 

∂s x +1 

∂�
≥ 0 ⇐⇒ 

ds x 

dp 
> 

ds x +1 

dp 
≥ 0 

and thus ∀ x ∈ X/ { b} : ∂s x 
∂�

> 

∂s x +1 

∂�
≥ 0 also follows from 

Lemma 5 . �

We define ˜ τ ≡ E [ T b ] as the expected number of blocks 

until fork resolution under the stationary distribution. We 

further define τ ≡ E [ 
∑ T b 

t=1 
A t ] as the expected fork reso- 

lution time under the stationary distribution with { A t } ∞ 

t=1 
independent and exponentially distributed. Note that the 

stationary distribution is given by { πx } x ∈ X , which is given 

explicitly in Lemma 1 . Note also that Z i 
d = 

∑ T b 
t=1 

A t where Z i 
denotes the expected fork resolution time for User i , and 

that the distribution for all Z i are identical because we ini- 

tialize our model with the stationary distribution. 



F.J. Hinzen, K. John and F. Saleh Journal of Financial Economics 144 (2022) 347–369 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that τ ≡ E [ 
∑ T b 

t=1 
A t ] = E [ A 1 ] × E [ T b ] = 

1 
�

× ˜ τ ,

because { A t } ∞ 

t=1 is an i.i.d sequence. More explicitly,

˜ τ = ˜ τ (p) ≡ ∑ 

x ∈ X s x (p) πx (p) , whereas τ = τ (p, �) ≡∑ 

x ∈ X 
s x (p) 
� πx (p) . 

Lemma 6 . ˜ τ Increases in p

Let p, p ′ ∈ (0 , 1) such that p ≤ p ′ . Then, ˜ τ (p) ≤ ˜ τ (p ′ ) 

Proof . Recall that ˜ τ (p) = 

∑ 

x ∈ X s x (p) πx (p) by definition.

Then, since Lemma 4 implies s x (p) ≤ s x (p ′ ) , we have that

˜ τ (p) = 

∑ 

x ∈ X s x (p) πx (p) ≤ ∑ 

x ∈ X s x (p ′ ) πx (p) . Lemma 1 im-

plies that the stationary distribution characterized by

p first-order stochastically dominates that character-

ized by p ′ , whereas Lemma 2 implies that s x is

a decreasing function of x ; these two results col-

lectively imply 
∑ 

x ∈ X s x (p ′ ) πx (p) ≤ ∑ 

x ∈ X s x (p ′ ) πx (p ′ ) . 17 In

turn, ˜ τ (p) ≤ ∑ 

x ∈ X s x (p ′ ) πx (p) ≤ ∑ 

x ∈ X s x (p ′ ) πx (p ′ ) = ˜ τ (p ′ )
as desired. �

Lemma 7 . τ vanishes in � if fork probability bounded away

from unity 

Suppose that the fork probability is given by an arbitrary

function p F : R + × R + �→ [0 , 1] such that sup 

�, �
p F (�, �) < 1 .

Then, for any sequence { �N , �N } ∞ 

N=1 
such that lim 

N→∞ 

�N = ∞ ,

we have that lim 

N→∞ 

τ (p F (�N , �N ) , �N ) = 0 . 

Proof . Lemma 6 implies that ˜ τ (p F (�N , �N )) ≤
˜ τ ( sup 

�, �
p F (�, �)) < ∞ for all N so that

sup 

N 

˜ τ (p F (�N , �N )) ≤ ˜ τ ( sup 

�, �
p F (�, �)) < ∞ . Then,

τ (p F (�N , �N )) , �N ) = 

1 
�N 

× ˜ τ (p F (�N , �N )) ≤
1 

�N 
× ˜ τ ( sup 

�, �
p F (�, �)) for any N implies

that lim sup 

N→∞ 

τ (p F (�N , �N ) , �N ) ≤ lim sup 

N→∞ 

(
1 

�N 
×

˜ τ ( sup 

�, �
p F (�, �)) 

)
= lim 

N→∞ 

(
1 

�N 

)
× ˜ τ ( sup 

�, �
p F (�, �)) = 0 .

Finally, recall that τ is defined as the expecta-

tion of a non-negative random variable so that

lim inf 
N→∞ 

τ (p F (�N , �N ) , �N ) ≥ 0 holds trivially and thus

lim 

N→∞ 

τ (p F (�N , �N ) , �N ) = 0 as desired. �

We define τ (�, �) ≡ τ (p(�, �) , �) . Recall that

p(�, �) = 1 − e −�� which is the fork probability function

for Bitcoin (see Appendix A ). In turn, τ (�, �) corre-

sponds specifically to Bitcoin’s consensus wait time.

When examining more general settings (e.g., Section 5.2,

Proposition 10 and Lemma 7 ), we explicitly acknowl-

edge the underlying fork probability function (e.g.,

τ = τ (p F ) = τ (p F (�, �) , �) for fork probability func-

tion p F ). 

Lemma 8 . Lower Bound for τ

τ (�, �) ≥ � e ��−1 
��
17 To see this point, note that 
∑ 

x ∈ X s x (p ′ ) πx (p) and 
∑ 

x ∈ X s x (p ′ ) πx (p ′ ) 
each correspond to expectations of the same random variable that takes 

on values { s x (p ′ ) } x ∈ X . For each x ∈ X , s x (p ′ ) occurs with probability πx (p) 

in the first case and with probability πx (p ′ ) in the second case. Cru- 

cially, as s x (p ′ ) decreases in x , the expectation is higher when taken with 

respect to the distribution which is smaller in the sense of first-order 

stochastic dominance (i.e., 
∑ 

x ∈ X s x (p ′ ) πx (p) ≤ ∑ 

x ∈ X s x (p ′ ) πx (p ′ ) ). 
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Proof . τ (�, �) ≥ �
s 0 (�, �) 

�� π0 (�, �) = � e ��b −1 
�� ≥ � e ��−1 

��
as desired. �

We define �(�, �) ≡ τ (�, �) + 

1 
� = τ (p(�, �) , �) + 

1 
� which equates with the expected wait time for the 

marginal user (i.e., Type c i = c ∗). Unless explicitly stated 

otherwise (e.g., Proposition 10 ), we use p(�, �) = 1 −
e −��, which is Bitcoin’s fork probability function. 

Lemma 9 . � reduces in Centralization 

Let �C : R + �→ R + and �D : R + �→ R + denote network 

delay functions such that �C (M) ≤ �D (M) for all M. Then, 

�(�, �C (M)) ≤ �(�, �D (M)) for all �, M ≥ 0 . 

Proof . By definition, �(�, �i (M)) = τ (p(�, �i (M))) + 

1 
� = 

1 
� · ˜ τ (p(�, �i (M))) + 

1 
� for i ∈ { C, D } . Then, 

p(�, �) = 1 − e −�� implies that p(�, �C (M)) ≤
p(�, �D (M)) so that Lemma 6 implies ˜ τ (p(�, �C (M))) ≤
˜ τ (p(�, �D (M)) . In turn, �(�, �C (M)) = 

1 
� ·

˜ τ (p(�, �C (M))) + 

1 
� ≤ 1 

� · ˜ τ (p(�, �D (M))) + 

1 
� = 

�(�, �D (M)) as desired. �

Lemma 10 . Increasing Wait Time in M

∀ M 

′ > M ≥ 0 : �(�, �(M 

′ )) − �(�, �(M)) = 

τ (�, �(M 

′ )) − τ (�, �(M)) > 0 

Proof . �(�, �(M 

′ )) − �(�, �(M)) 

= τ (�, �(M 

′ )) − τ (�, �(M)) 

= 

∑ 

x ∈ X 
{ s x (�, �(M 

′ )) 
�

πx (�, �(M 

′ )) −
s x (�, �(M)) 

� πx (�, �(M)) } 
≥ ∑ 

x ∈ X 
s x (�, �(M 

′ )) −s x (�, �(M)) 
� πx (�, �(M)) 

= 

∑ 

x ∈ X 
1 
�

M 

′ ∫ 
M 

∂s x 
∂�

| �=�(m ) �
′ (m ) dm πx (�, �(M)) 

> 0 �

Lemma 11 . Zero Wait 

τ (�, 0) = 0 

Proof . τ (�, 0) = s k (�, 0) = 0 �

Appendix C. Proofs for results in main text 

Appendix C.1 derives Proposition 1 , which estab- 

lishes equilibrium existence. Appendix C.2 then de- 

rives preliminary lemmas that are necessary for prov- 

ing the results stated within Sections 3 –5 . Our proofs of 

Propositions 2 and 3 rely upon Propositions 6 and 7 re- 

spectively, so we derive our results in this Appendix in a 

different order than that which the results are stated in 

the manuscript. More explicitly, we first derive the results 

from Section 4 in Appendix C.3 and then derive all other 

results in Appendix C.4 . Our ordering of proofs within this 

Appendix ensures that each proof relies only upon results 

derived earlier within the Appendices. 

C1. Proof of Proposition 1 

Proof . For coherence of our discussion, we must specify 

an initial distribution for our Blockchain CTMC model. We 

specify that distribution as the stationary distribution as 



F.J. Hinzen, K. John and F. Saleh Journal of Financial Economics 144 (2022) 347–369 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 
derived in Lemma 1 . The interested reader may consult

Appendix B for additional details. 

We proceed as follows: first, we assume that users take

the equilibrium objects c ∗ and M as given and establish

that (A) gives the equilibrium fee function in that con-

text. Then, we demonstrate that (B)–(D) must hold. Finally,

we demonstrate existence of c ∗ and M that satisfy (B)–(D),

thereby completing the proof. 

Establishing (A) given c ∗ and M

Definition 1 (iii) requires that the equilibrium fee func-

tion, φ, satisfies: 

φ(c i ) = arg max 
f≥0 

R 1 · (π∗N) α + R 0 − c i · E [ W ( f, f −i )] − f 

(C.1)

for c i ≤ c ∗. Then, since transactions are processed

in descending fee order and blocks are unit-sized,

Definition 1 (iv) implies: 

E [ W ( f, f −i )] = 

1 

�
× E [ 

∑ 

j : j � = i 
I{ f j > f } ] + E [ Z i ] (C.2)

where the first term on the right-hand side represents the

wait due to higher-priority users and the second term on

the right-hand side represents the stationary expected wait

time due to the need for miners to attain consensus. 

Per Definition 1 (iii), each user who does not adopt

Bitcoin (i.e., any User j such that c j > c ∗) optimally pays

zero fees. Consequently, f j > f ≥ 0 implies c j ≤ c ∗ and thus

Eq. (C.2) can be re-written as: 

E [ W ( f, f −i )] = 

1 

�
× E [ 

∑ 

j : j � = i 
I{ c ∗ ≥ c j , f j > f } ] + E [ Z i ] 

(C.3)

Note that Definition 1 (ii) imposes that each user an-

ticipates that adopting users (i.e., any User j such that

c j ∈ [ c , c ∗] ) select fees according to the equilibrium fee

function, φ. As a consequence, f j = φ(c j ) for all j so that

Eq. (C.3) becomes: 

E [ W ( f, f −i )] = 

1 

�
× E [ 

∑ 

j : j � = i 
I{ c ∗ ≥ c j , φ(c j ) > f } ] + E [ Z i ]

(C.4)

Then, using { c j } N j=1 
being i.i.d yields: 

E [ W ( f, f −i )] = E [ W ( f, φ(c −i )]= 

N − 1 

�
×P { c ∗ ≥ c j , φ(c j )

> f } + E [ Z i ] (C.5)

We follow prior literature and restrict ourselves to

φ being strictly increasing over the set of adopting

users. Hence, the inverse of φ, φ−1 , is well-defined and

Eq. (C.5) becomes: 

E [ W ( f, f −i )] = E [ W ( f, φ(c −i )] 

= 

N − 1 

�
×P { c ∗ > c j >φ−1 ( f ) }++ E [ Z i ] (C.6)

Since c j ∼ U[ c , c ] , Eq. (C.6) simplifies to: 

E [ W ( f, f −i )] = E [ W ( f, φ(c −i )] 
361 
= 

N − 1 

�
× max 

{
c ∗ − φ−1 ( f ) 

c − c 
, 0 

}
+ E [ Z i ] 

(C.7) 

Applying Eq. (C.7) to Eq. (C.1) then yields: 

φ(c i ) = arg max 
f≥0 

� − c i · (N − 1) 

�

× max { c ∗ − φ−1 ( f ) 

c − c 
, 0 } − f (C.8) 

where � = R 1 · (π∗N) α + R 0 − c i · E [ Z i ] does not depend 

upon User i ’s fee choice. Note that paying f i > φ(c ∗) is 

dominated by paying f i = φ(c ∗) because paying f i = φ(c ∗) 
ensures a user the highest priority with probability one; in 

particular, paying f i > φ(c ∗) does not reduce wait time rel- 

ative to f i = φ(c ∗) and thus only reduces user utility rela- 

tive to f i = φ(c ∗) because f i > φ(c ∗) entails higher disutil- 

ity from the higher fee payment. As a consequence, with- 

out loss of generality, we can restrict the fee optimization 

problem to f ∈ [0 , φ(c ∗)] and Eq. (C.8) thereby becomes: 

φ(c i ) = arg max 
f∈ [0 ,φ(c ∗)] 

� − c i · (N − 1) 

�
× c ∗ − φ−1 ( f ) 

c − c 
− f 

(C.9) 

Then, taking the first order condition yields: 

c i · (N − 1) 

� · ( c − c ) 
× 1 

φ′ (φ−1 ( f i )) 
− 1 = 0 (C.10) 

where f i is User i ’s optimal fee. In equilibrium, per 

Definition 1 (ii), we must have f i = φ(c i ) so that 

Eq. (C.10) then becomes: 

c i · (N − 1) 

� · ( c − c ) 
× 1 

φ′ (c i ) 
− 1 = 0 (C.11) 

Note that Eq. (C.11) represents a differential equa- 

tion that the equilibrium fee function must satisfy. In par- 

ticular, after some algebra, Eq. (C.11) becomes: 

φ′ (c i ) = 

c i · (N − 1) 

� · ( c − c ) 
(C.12) 

Note that φ( c ) = 0 must hold in any equilibrium where 

φ is strictly increasing over [ c , c ] . This is because φ strictly 

increasing over [ c , c ] implies that any User j with c j = c 

receives service with the lowest priority with probability 

one. In turn, any strictly positive fee by a User j with c j = c 

is dominated by paying a zero fee because the lower fee 

directly increases User j’s utility without increasing her ex- 

pected wait time. Then, solving (C.12) explicitly and impos- 

ing φ( c ) = 0 yields: 

φ(c) = 

N − 1 

c − c 
× c 2 − c 2 

2�
(C.13) 

for c ≤ c ∗. Note that φ(c) = 0 when c > c ∗ because, per 

Definition 1 (i), we subsequently determine c ∗ such that 

any User i with c i > c ∗ prefers the traditional alternative. 

Consequently, any User i with c i > c ∗ optimally selects a 

fee φ(c ) = 0 . Explicitly, φ is given as follows: 
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φ(c)= 

N − 1 

c −c 
× c 2 − c 2 

2�
if c ≤ c ∗ and φ(c) = 0 otherwise 

(C.14)

which proves (A). 

Establishing (B) - (D) 

Definition 1 (ii) and (v) imply: 

βM = B + E [ 
∑ 

i 

φ(c i )] (C.15)

Then, invoking symmetry of user types (i.e., c i are i.i.d)

yields: 

βM = B + N × E [ φ(c 1 )] (C.16)

Further, invoking our solution for φ from Eqs. (C.14) ,

(C.16) becomes: 

βM = B + N 

c ∗∫ 
c 

(
N − 1 

c − c 
× c 2 − c 2 

2�

)
× 1 

c − c 
dc (C.17)

Evaluating the integral on the right-hand side and di-

viding by β then establishes (B): 

M = M(c ∗) ≡ B 

β
+ 

N(N − 1) 

6 β�

(c ∗ − c ) · (c 2 ∗ + c ∗c − 2 c 2 ) 

( c − c ) 2 

(C.18)

To establish (C), note that if c ∗ ∈ ( c , c ) , then for arbitrar-

ily small ε > 0 , Definition 1 (i) and (ii) imply that adopting

users (i.e., any User c i such that c i ≤ c ∗) find adoption op-

timal. More formally, the following equation must hold: 

max 
f≥0 

(
R 1 ·(π∗N) α+ R 0 −(c ∗−ε) ·E [ W ( f, φ(c −i ))] − f 

)
≥0 

(C.19)

Moreover, Definition 1 (i) and (ii) also imply that non-

adopting users (i.e., any User c i such that c i > c ∗) find non-

adoption optimal so that the following equation must also

hold: 

max 
f≥0 

(
R 1 ·(π∗N) α+R 0 −(c ∗ + ε)·E [ W ( f, φ(c −i ))]− f 

)
< 0 

(C.20)

Then, taking ε → 0 + in both Eqs. (C.19) and (C.20) col-

lectively imply that the marginal user (i.e., any User c i
such that c i = c ∗) is indifferent between adoption and non-

adoption: 

max 
f≥0 

(
R 1 · (π∗N) α + R 0 − c ∗ · E [ W ( f, φ(c −i ))] − f 

)
= 0 

(C.21)

In turn, applying Definition 1 (ii) and (iii) which re-

quires that the marginal user pay the optimal fee (i.e.,

f i = φ(c ∗) for any User i such that c i = c ∗) implies: 

R 1 · (π∗N) α + R 0 − c ∗ · E [ W (φ(c ∗) , φ(c −i ))] − φ(c ∗) = 0 

(C.22)

Recall that the marginal user pays the highest fee (i.e.,

φ is increasing over [ c , c ∗] and zero thereafter) so that,

with probability one, she does not have to wait for any
362 
other users to receive service ahead of her. As a conse- 

quence, her wait equals the sum of her individual ser- 

vice time, 1 
� , and the consensus wait time, τ (�, �(M)) . 

Then, since �(�, �(M)) ≡ 1 
� + τ (�, �(M)) , Eq. (C.22) be- 

comes: 

R 1 · (π∗N) α + R 0 − c ∗ · �(�, �(M)) − φ(c ∗) = 0 (C.23) 

and applying Eq. (2) and the previously derived results (A) 

and (B) to Eq. (C.23) then yields: 

R 1 ·
((

c ∗ − c 

c − c 

)
· N 

)α

+ R 0 = c ∗ · �(�, �(M(c ∗))) 

+ 

N − 1 

c − c 
× c 2 ∗ − c 2 

2�
(C.24) 

which establishes (C). Note that (C) employs the hy- 

pothesis R 1 · N 

α + R 0 < c · �(�, �(M( c ))) + (N − 1) × c + c 
2�

, 

which we have not yet used. This hypothesis will be em- 

ployed in the last part of this proof to establish existence 

of c ∗ and M that satisfy all equilibrium conditions. 

Turning to (D), note that Definition 1 (i) implies that, 

if c ∗ = c , then any User i with c i = c must find adoption 

optimal: 

max 
f≥0 

(
R 1 · (π∗N) α + R 0 − c · E [ W ( f, f −i )] − f 

)
≥ 0 (C.25) 

Definition 1 (ii) then implies that User i anticipates all 

other user fees are given by the equilibrium fee function 

(i.e., f −i = φ(c −i ) ) so that Eq. (C.25) implies: 

max 
f≥0 

(
R 1 · (π∗N) α + R 0 − c · E [ W ( f, φ(c −i ))] − f 

)
≥ 0 

(C.26) 

In turn, Definition 1 (ii) and (iii) collectively imply that 

any User i with c i = c selects her fee optimally (i.e., f i = 

φ( c ) when c i = c ) so that Eq. (C.26) implies: 

R 1 · (π∗N) α + R 0 − c · E [ W (φ( c ) , φ(c −i ))] − φ( c ) ≥ 0 

(C.27) 

Recall that φ is increasing over [ c , c ∗] and hence over 

[ c , c ] when c ∗ = c . In turn, a User i with c i = c receives 

service first with probability one whenever c ∗ = c and 

her wait equals �(�, �(M)) . Consequently, Eq. (C.27) be- 

comes: 

R 1 · (π∗N) α + R 0 − c · �(�, �(M)) − φ( c ) ≥ 0 (C.28) 

Further, applying Eq. (2) and the previously derived re- 

sults (A) and (B) to Eq. (C.28) with c ∗ = c then yields: 

R 1 · N 

α + R 0 ≥ c · �(�, �(M( c ))) + (N − 1) × c + c 

2�
(C.29) 

which is the hypothesis for (D). Note that (D) asserts that 

this hypothesis implies a full adoption equilibrium (i.e., 

c ∗ = c ). Thus far, we have shown only that this hypoth- 

esis is the condition for adoption to be optimal for any 

User i with c i = c in a full adoption equilibrium (i.e., when 

c ∗ = c ). To complete this portion of the proof, we must 

demonstrate that Eq. (C.29) implies also that adoption is 

optimal for any User i such that c < c . As we demonstrate 
i 
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subsequently, that fact follows from the user utility of an

adopting user decreasing in c i . More formally, we let U de-

note the user utility of any adopting User i (i.e., c ≤ c ∗) in

any equilibrium with cut-off c ∗ so that U is given as fol-

lows: 

(c, c ∗) ≡ max 
f≥0 

(
R 1 ·

((
c ∗ − c 

c − c 

)
· N 

)α

+ R 0 

−c · E [ W ( f, φ(c −i ))] − f 

)
(C.30)

and we let ˜ U denote the utility of any adopting User i (i.e.,

c ≤ c ∗) when she selects fee f so that ˜ U is given as fol-

lows: 

˜ 
 (c, f, c ∗) ≡ R 1 ·

((
c ∗−c 

c −c 

)
·N 

)α

+ R 0 −c·E [ W ( f, φ(c −i ))] − f (C.31)

Definitions 1 (ii) and (iii) require that User i ’s fee is

set optimally (i.e., f i = φ(c i ) ) so that the following equa-

tion holds for any c i ≤ c ∗ in any equilibrium: 

(c i , c ∗) = 

˜ U (c i , φ(c i ) , c ∗) (C.32)

Then, differentiating with respect to c yields: 

∂U(c i , c ∗) 
∂c 

= 

∂ ̃  U (c i , φ(c i ) , c ∗) 
∂c 

+ 

∂ ̃  U (c i , φ(c i ) , c ∗) 
∂ f 

× dφ(c i ) 

dc 

(C.33)

Note that the first-order condition in the derivation of

(A) implies that 
∂ ̃  U (c i ,φ(c i ) ,c ∗) 

∂ f 
= 0 so that direct com puta-

tion from Eqs. (C.31) and (C.33) yield: 

∂U(c i , c ∗) 
∂c 

= 

∂ ̃  U (c i , φ(c i ) , c ∗) 
∂c 

=−E [ W (φ(c i ) , φ(c −i ))] < 0 

(C.34)

Recall that Eq. (C.28) corresponds to the condition that

any User i with c i = c finds adoption optimal in a full

adoption equilibrium (i.e., when c ∗ = c ). More formally,

Eq. (C.28) is equivalent to U( c , c ) ≥ 0 so that Eq. (C.34) im-

plies that adoption is optimal for all Users (i.e., U(c i , c ) ≥ 0

for all c i ≤ c ), which thus establishes (D). 

Existence of c ∗ and M

As just shown, when Eq. (C.28) holds, then a full adop-

tion equilibrium arises. In such an equilibrium, solutions

for c ∗ and M are given explicitly by: 

c ∗ = c , M = M( c ) (C.35)

When Eq. (C.28) does not hold, then a full adoption

equilibrium cannot arise since Eq. (C.28) is the condition

for a User i with c i = c to find adoption optimal and there-

fore is a necessary condition for a full adoption equilib-

rium. Consequently, in such a case, only an equilibrium

such that c ∗ ∈ ( c , c ) can arise. We subsequently demon-

strate the existence of such an equilibrium. More for-

mally, we demonstrate existence of c ∗ and M such that

(B) and (C) both hold. Note that (A) holds for any given

c ∗ and (D) is not relevant because it applies only when

Eq. (C.28) holds. In turn, existence of c ∗ and M satisfying

(B) and (C) suffices to establish existence of an equilibrium

for model parameters such that Eq. (C.28) does not hold. 
363 
Note that Eq. (C.28) corresponds to a User i such that 

c i = c finding not adopting optimal whenever c ∗ = c . More 

formally, in this case, the following equation must hold: 

( c , c ) < 0 (C.36) 

Recall that we impose R 0 > c · ( 1 � + τ (�, �( B 
β
))) , 

which ensures that adopting is optimal whenever c ∗ = c 

(i.e., non-adoption for all users is not an equilibrium). 

Explicitly, R 0 > c · ( 1 
�

+ τ (�, �( B 
β
))) is equivalent to: 

( c , c ) > 0 (C.37) 

Then, Eqs. (C.36) - (C.37) , and continuity of U 

∗(c) ≡
(c, c) implies the existence of ˜ c ∗ ∈ ( c , c ) such that 

 

∗( ̃ c ∗) = 0 . Note that U 

∗( ̃ c ∗) = 0 is equivalent to (C) if 

Eq. (C.28) does not hold. In turn, the equilibrium c ∗ and 

M are given explicitly as follows: 

c ∗ = 

˜ c ∗, M = M( ̃  c ∗) (C.38) 

where the latter equation satisfies (B) and thereby com- 

pletes the proof. �

C2. Preliminary lemmas 

Lemma 12 . Interior Adoption Rate For Large N

Suppose that the transaction rate, � > 0 , is fixed. Then, 

there exists N > 0 such that for all N > N , we have the fol- 

lowing: 

R 1 · N 

α + R 0 < c · �(�, �(M( c ))) + (N − 1) × c + c 

2�

where M(c) is defined explicitly in Proposition 1 . 

Proof . α ∈ (0 , 1) implies that lim 

N→∞ 

N−1 
N α = ∞ which further 

implies: 

lim 

N→∞ 

(
R 1 · N 

α + R 0 − (N − 1) × c + c 

2�

)
= −∞ (C.39) 

In turn, that implies that there exists N such that for all 

N > N , we have the following: 

R 1 · N 

α + R 0 < (N − 1) × c + c 

2�
(C.40) 

and since c · �(�, M( c )) ≥ 0 , we also have the following 

for N > N : 

R 1 · N 

α + R 0 < c · �(�, �(M( c ))) + (N − 1) × c + c 

2�
(C.41) 

which completes the proof. �

Lemma 13 . Interior Adoption Rate For Large N And Variable 

Transaction Rate, �N 

Suppose that the transaction rate, �N > 0 , is a function of 

transaction demand, N. Then, there exists N > 0 such that for 

all N > N , we have the following: 

R 1 · N 

α + R 0 < c · �(�N , �(M( c ))) + (N − 1) × c + c 

2�N 

where M(c) is define explicitly in Proposition 1 . 

Proof . We prove this result by contradiction. In particular, 

if there did not exist an N as described in the statement of 



F.J. Hinzen, K. John and F. Saleh Journal of Financial Economics 144 (2022) 347–369 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

this lemma, then there must be infinitely many values of

N such that: 

R 1 · N 

α + R 0 ≥ c · �(�N , �(M( c ))) + (N − 1) × c + c 

2�N 

(C.42)

and we demonstrate that this is not possible. 

Note that if there existed infinitely many N such that

Eq. (C.42) held for all those N, then we could form a sub-

sequence indexed by N k such that: 

R 1 · N 

α
k + R 0 ≥ c · �(�N k , �(M( c ))) + (N k − 1) × c + c 

2�N k 

(C.43)

for all k and lim 

k →∞ 

N k = ∞ . On that sub-sequence, either

lim inf 
k →∞ 

N 1 −α
k 

�N k 

= ∞ or lim inf 
k →∞ 

N 1 −α
k 

�N k 

< ∞ . We subsequently

consider each case and demonstrate that each implies a

contradiction, thereby establishing the lemma. 

Case 1: lim inf 
k →∞ 

N 1 −α
k 

�N k 

= ∞ 

Equation (C.43) implies: 

R 1 · N 

α
k + R 0 ≥ (N k − 1) × c + c 

2�N k 

(C.44)

Equation (C.44) can be re-written as: 

R 1 · N 

α
k + R 0 ≥ N k − 1 

N k 

× N k ×
c + c 

2�N k 

(C.45)

Then, dividing each side of Eq. (C.45) by N 

α
k 

yields: 

R 1 + 

R 0 

N 

α
k 

≥ N k − 1 

N k 

× N 

1 −α
k 

× c + c 

2�N k 

(C.46)

Note that inf 
k 

(
N k −1 

N k 
× N 

1 −α
k 

× c + c 
2�N k 

)
≥ c + c 

2 × inf 
k 

N k −1 

N k 
×

inf 
k 

N 1 −α
k 

�N k 

≥ c + c 
4 × inf 

k 

N 1 −α
k 

�N k 

where the last inequality follows

because N k ≥ 2 for all k implies 
N k −1 

N k 
≥ 1 

2 for all k . As a

consequence, Eq. (C.46) implies: 

R 1 + 

R 0 

N 

α
k 

≥ c + c 

4 

× inf 
k 

N 

1 −α
k 

�N k 

(C.47)

Taking limits on both sides as k → ∞ implies R 1 = ∞ ,

which yields the desired contradiction since R 1 is a finite

model parameter. 

Case 2: lim inf 
k →∞ 

N 1 −α
k 

�N k 

< ∞ 

Note that there must exist a further sub-sequence of

the sub-sequence indexed by N k l 
such that the further sub-

sequence converges to lim inf 
k →∞ 

N 1 −α
k 

�N k 

. Denoting the further

sub-sequence by index N k l 
, Eq. (C.43) implies: 

R 1 · N 

α
k l 

+ R 0 ≥ c · �(�N k l 
, �(M( c ))) (C.48)

for all l ∈ N with lim 

l→∞ 

N k l 
= ∞ . 

Proposition 1 (B) implies that M( c ) ≥ B 
β

. More-

over, Lemma 6 and p(�, �) = 1 − e −�� increasing

in � imply that �(�, �) increases in � so that
364 
�(�N k l 
, �(M( c ))) ≥ �(�N k l 

, �( B 
β
)) . In turn, applying 

those facts to Eq. (C.48) yields: 

R 1 · N 

α
k l 

+ R 0 ≥ c · �(�N k l 
, �( 

B 

β
)) (C.49) 

Lemma 8 implies �(�N k l 
, �( B 

β
)) ≥ e 

�N k l 

�( B 
β

) 

−1 
�N k l 

so that 

Eq. (C.49) implies: 

R 1 · N 

α
k l 

+ R 0 ≥ c · e 
�N k l 

�( B 
β

) − 1 

�N k l 

(C.50) 

Note that e x − 1 = 

∞ ∑ 

n =1 

x n 

n ! ≥ x ν

ν! when x ≥ 0 where ν ≡

� α
1 −α + 2 � . Then, e 

�N k 
�( B 

β
) −1 

�N k 

≥ 1 
ν! ·

(�N k 
�( B 

β
)) ν

�N k 

≥ 1 
ν! · �ν−1 

N k 
·

�( B 
β
) ν so that Eq. (C.50) implies: 

R 1 · N 

α
k l 

+ R 0 ≥ c 

ν! 
· �ν−1 

N k l 
· �( 

B 

β
) ν (C.51) 

Moreover, since �ν−1 
N k 

= ( 
�N k 

N 1 −α
k 

) (ν−1) · N 

(1 −α) ·(ν−1) 
k 

, 

Eq. (C.51) can be re-written as: 

R 1 · N 

α
k l 

+ R 0 ≥ c 

ν! 
· ( 

�N k l 

N 

1 −α
k l 

) ν−1 · N 

(1 −α) ·(ν−1) 
k l 

· �( 
B 

β
) ν

(C.52) 

In turn, dividing both sides by N 

α
k l 

yields: 

R 1 + 

R 0 

N 

α
k l 

≥ c 

ν! 
· ( 

�N k l 

N 

1 −α
k l 

) ν−1 · N 

(1 −α) ·(ν−1) −α
k l 

· �( 
B 

β
) ν

(C.53) 

lim 

l→∞ 

�N k l 

N 1 −α
k l 

= 

1 

lim 

l→∞ 

N 1 −α
k l 

�N k l 

= 

1 

lim inf 
k →∞ 

N 1 −α
k 
�N k 

> 0 where the second 

equality follows from the further sub-sequence being con- 

structed to converge to lim inf 
k →∞ 

N 1 −α
k 

�N k 

, and the strict inequal- 

ity follows from lim inf 
k →∞ 

N 1 −α
k 

�N k 

< ∞ . Moreover, recall that 

ν ≡ � α
1 −α + 2 � so that (1 − α) · (ν − 1) ≥ (1 − α) · ( α

1 −α + 

1) = 1 . In turn, (1 − α) · (ν − 1) − α ≥ 1 − α > 0 so that 

lim 

l→∞ 

N 

(1 −α) ·(ν−1) −α
k l 

= ∞ because lim 

l→∞ 

N k l 
= ∞ . Then, since 

lim 

l→∞ 

�N k l 

N 1 −α
k l 

> 0 and lim 

l→∞ 

N 

(1 −α) ·(ν−1) −α
k l 

= ∞ , taking l → ∞ on 

both sides of Eq. (C.53) implies R 1 = ∞ , which generates 

the desired contradiction. R 1 = ∞ is a contradiction be- 

cause R 1 is a finite parameter of our model. �

Lemma 14 . Bounded Adoption Eventually Implies Uniformly 

Bounded Adoption 

If the adoption level, π∗N, is bounded as N → ∞ (i.e., 

lim sup 

N→∞ 

π∗N < ∞ ) , then the adoption level is bounded uni- 

formly for all N (i.e., sup 

N∈ N 
π∗N < ∞ ) . 

Proof . Let L ≡ lim sup 

N→∞ 

π∗N < ∞ . Then, by definition, 

there exists N ε < ∞ such that sup 

N ∈ N : N ≥N ε 

π∗N ≤ L + ε < ∞ 
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where ε > 0 and ε < ∞ . Additionally, note that

π∗ ∈ [0 , 1] so that sup 

N ∈ N : N ≤N ε 

π∗N ≤ N ε . Thus, sup 

N∈ N 
π∗N ≤

max { sup 

N ∈ N : N ≤N ε 

π∗N, sup 

N ∈ N : N ≥N ε 

π∗N} ≤ max { N ε , L + ε} < ∞ , 

thereby completing the proof. �

C3. Proofs for Section 4 

Proof of Proposition 6. . Lemma 14 yields that lim sup 

N→∞ 

π∗N <

∞ ⇒ sup 

N∈ N 
π∗N < ∞ , so it suffices to show lim sup 

N→∞ 

π∗N < ∞ .

We establish that result by contradiction. In particular, we

assume lim sup 

N→∞ 

π∗N = ∞ and demonstrate that this yields

a contradiction, thereby establishing lim sup 

N→∞ 

π∗N < ∞ and,

via Lemma 14 , also sup 

N∈ N 
π∗N < ∞ . 

Lemma 12 and Proposition 1 (C) collectively imply that

there exists an N such that for all N > N , the following

equation holds: 

R 1 ·
(

c ∗ − c 

c − c 

)α

· N 

α + R 0 = c ∗�(�, �(M(c ∗))) + 

N − 1 

c − c 

× c 2 ∗ − c 2 

2�
(C.54)

which implies: 

R 1 ·
(

c ∗ − c 

c − c 

)α

· N 

α + R 0 ≥ N − 1 

c − c 
× c 2 ∗ − c 2 

2�
(C.55)

for N > N . Then, using π∗ = 

c ∗−c 
c −c 

, implies: 

R 1 · (π∗N) α + R 0 ≥ N − 1 

N 

× (π∗N) × c ∗ + c 

2�
(C.56)

for all N > N . Further, using c ∗ ≥ c yields: 

R 1 · (π∗N) α + R 0 ≥ N − 1 

N 

× (π∗N) × c 

�
(C.57)

Then, dividing through by (π∗N) α and isolating

(π∗N) 1 −α yields: 

(π∗N) 1 −α ≤
( N 

N − 1 

)
×

(�

c 

)
·
(
R 1 + 

R 0 

(π∗N) α

)
(C.58)

for all N > N . Note that there must exist a sub-sequence

starting after index N = N along which π∗N converges to

lim sup 

N→∞ 

π∗N = ∞ . As a consequence, indexing such a sub-

sequence by N k yields: 

(π∗N k ) 
1 −α ≤

( N k 

N k − 1 

)
×

(�

c 

)
·
(
R 1 + 

R 0 

(π∗N k ) α

)
(C.59)

for all k with lim 

k →∞ 

N k = ∞ and lim 

k →∞ 

π∗N k = ∞ . In turn, tak-

ing k → ∞ in Eq. (C.59) yields: 

∞ = lim 

k →∞ 

(π∗N k ) 
1 −α ≤ lim 

k →∞ 

{ ( N k 

N k − 1 

)
×

(�

c 

)
×
(
R 1 + 

R 0 

(π∗N k ) α

)} ≤ � · R 1 

c 
(C.60)

but �, R 1 and c are all finite model parameters, implying

that that 
�R 1 

c < ∞ so that Eq. (C.60) delivers a contradic-

tion and completes the proof. �
365 
Proof of Proposition 7 . Lemma 14 yields that lim sup 

N→∞ 

π∗N < 

∞ ⇒ sup 

N∈ N 
π∗N < ∞ , so it suffices to show lim sup 

N→∞ 

π∗N < ∞ . 

We establish that result by contradiction. In particular, we 

assume lim sup 

N→∞ 

π∗N = ∞ and demonstrate that this yields 

a contradiction, thereby establishing lim sup 

N→∞ 

π∗N < ∞ and, 

via Lemma 14 , also sup 

N∈ N 
π∗N < ∞ . 

Lemma 13 and Proposition 1 (C) collectively imply that 

there exists an N such that for all N > N , the following 

equation holds: 

R 1 ·
(

c ∗ − c 

c − c 

)α

· N 

α + R 0 = c ∗�(�N , �(M(c ∗))) 

+ 

N − 1 

c − c 
× c 2 ∗ − c 2 

2�N 

(C.61) 

Note that N−1 
c −c 

× (c 2 ∗ − c 2 ) = 

N−1 
N × N 

c −c 
× (c 2 ∗ − c 2 ) = 

N−1 
N × N × c ∗−c 

c −c 
× (c ∗ + c ) = 

N−1 
N × (π∗N) × (c ∗ + c ) . Then, 

invoking π∗ = 

c ∗−c 
c −c 

in Eq. (C.61) implies: 

R 1 · (π∗N) α + R 0 = c ∗�(�N , �(M(c ∗))) + 

N − 1 

N 

× (π∗N)

× c ∗ + c 

2�N 

(C.62)

for all N > N . Moreover, since lim sup 

N→∞ 

π∗N = ∞ , there exists 

a sub-sequence indexed by N k such that: 

R 1 · (π∗N k ) 
α + R 0 = c ∗�(�N k , �(M(c ∗))) + 

N k − 1 

N k 

×(π∗N k ) ×
c ∗ + c 

2�N k 

(C.63) 

for all k with lim 

k →∞ 

N k = ∞ and lim 

k →∞ 

π∗N k = ∞ . On this sub- 

sequence, either lim inf 
k →∞ 

(π∗N k ) 
1 −α

�N k 

= ∞ or lim inf 
k →∞ 

(π∗N k ) 
1 −α

�N k 

< 

∞ . We subsequently consider each case separately. 

Case 1: lim inf 
k →∞ 

(π∗N k ) 
1 −α

�N k 

= ∞ 

Equation (C.63) implies: 

R 1 · (π∗N k ) 
α + R 0 ≥ N k − 1 

N k 

× (π∗N k ) ×
c ∗ + c 

2�N k 

(C.64) 

Note that c ∗ ≥ c so that Eq. (C.64) implies: 

R 1 · (π∗N k ) 
α + R 0 ≥ N k − 1 

N k 

× (π∗N k ) ×
c 

�N k 

(C.65) 

Dividing each side in Eq. (C.66) by (π∗N) α then yields: 

R 1 + 

R 0 

(π∗N k ) α
≥ N k − 1 

N k 

× (π∗N k ) 
1 −α × c 

�N k 

(C.66) 

Note that 
N k −1 

N k 
× (π∗N k ) 

1 −α × c 
�N k 

≥ inf 
k 

(
N k −1 

N k 
×

(π∗N k ) 
1 −α × c 

�N k 

)
≥ inf 

k 

N k −1 
N k 

× c × inf 
k 

(π∗N k ) 
1 −α

�N k 

≥
c 
2 × inf 

k 

(π∗N k ) 
1 −α

�N k 

where the last inequality uses N k ≥ 2 

for all k . Note also that 
R 0 

inf 
k 

(π∗N k ) 
α ≥ R 0 

(π∗N k ) 
α . In turn, 

Eq. (C.66) implies: 

R 1 + 

R 0 

inf 
k 

(π∗N k ) α
≥ c 

2 

× inf 
k 

(π∗N) 1 −α

�N k 

(C.67) 
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Then, taking limits as k → ∞ implies R 1 = ∞ , which de-

livers the desired contradiction since R 1 is a finite param-

eter of our model. 

Case 2: lim inf 
k →∞ 

(π∗N k ) 
1 −α

�N k 

< ∞ 

Equation (C.63) implies: 

R 1 · (π∗N k ) 
α + R 0 ≥ c ∗�(�N k , �(M(c ∗))) (C.68)

Proposition 1 (B) implies that M(c ∗) ≥ B 
β

for any

c ∗. Moreover, Lemma 6 and p(�, �) = 1 − e −�� in-

creasing in � imply that �(�, �) increases in � so

that �(�N k 
, �(M(c ∗))) ≥ �(�N k 

, �( B 
β
)) . In turn, applying

those facts and c ∗ ≥ c to Eq. (C.68) yields: 

R 1 · (π∗N k ) 
α + R 0 ≥ c · �(�N k , �( 

B 

β
)) (C.69)

Lemma 8 implies �(�N k 
, �( B 

β
)) ≥ e 

�N k 
�( B 

β
) −1 

�N k 

so that

Eq. (C.69) implies: 

R 1 · (π∗N k ) 
α + R 0 ≥ c · e �N k 

�( B 
β

) − 1 

�N k 

(C.70)

Note that e x − 1 = 

∞ ∑ 

n =1 

x n 

n ! ≥ x ν

ν! when x ≥ 0 where ν ≡

� α
1 −α + 2 � . Then, e 

�N k 
�( B 

β
) −1 

�N k 

≥ 1 
ν! ·

(�N k 
�( B 

β
)) ν

�N k 

≥ 1 
ν! · �ν−1 

N k 
·

�( B 
β
) ν so that Eq. (C.70) implies: 

R 1 · (π∗N k ) 
α + R 0 ≥ c 

ν! 
· �ν−1 

N k 
· �( 

B 

β
) ν (C.71)

Moreover, since �ν−1 
N k 

= ( 
�N k 

(π∗N k ) 
1 −α ) (ν−1) ·

(π∗N k ) 
(1 −α) ·(ν−1) , Eq. (C.71) can be re-written as: 

R 1 · (π∗N k ) 
α + R 0 ≥ c 

ν! 
· ( �N k 

(π∗N k ) 1 −α
) (ν−1) 

·(π∗N k ) 
(1 −α) ·(ν−1) · �( 

B 

β
) ν (C.72)

Dividing through by (π∗N k ) 
α then yields: 

R 1 + 

R 0 

(π∗N k ) α
≥ c 

ν! 
· ( �N k 

(π∗N k ) 1 −α
) (ν−1) 

·(π∗N k ) 
(1 −α) ·(ν−1) −α · �( 

B 

β
) ν (C.73)

Note that there exists a further sub-sequence that con-

verges to lim inf 
k →∞ 

(π∗N k ) 
1 −α

�N k 

. Explicitly, indexing that fur-

ther sub-sequence by N k l 
, we have that lim 

l→∞ 

(π∗N k l 
) 1 −α

�N k l 

=

lim inf 
k →∞ 

(π∗N k ) 
1 −α

�N k 

due to the construction of the fur-

ther sub-sequence. Note also that lim 

l→∞ 

N k l 
= ∞ and

lim 

l→∞ 

π∗N k l 
= ∞ because lim 

k →∞ 

N k = ∞ and lim 

k →∞ 

π∗N k = ∞ .

Since Eq. (C.73) holds for all k , it also holds for all k l . More

explicitly: 

R 1 + 

R 0 

(π∗N k l 
) α

≥ c 

ν! 
· ( 

�N k l 

(π∗N k l 
) 1 −α

) (ν−1) 

·(π∗N k l 
) (1 −α) ·(ν−1) −α · �( 

B 

β
) ν (C.74)
366 
lim 

l→∞ 

�N k l 

(π∗N k l 
) 1 −α = 

1 

lim 

l→∞ 

(π∗N k l 
) 1 −α

�N k l 

= 

1 

lim inf 
k →∞ 

(π∗N k ) 
1 −α

�N k 

> 0 

where the second equality follows from the further sub- 

sequence being constructed to converge to lim inf 
k →∞ 

(π∗N k ) 
1 −α

�N k 

, 

and the strict inequality follows from lim inf 
k →∞ 

(π∗N k ) 
1 −α

�N k 

< ∞ . 

Moreover, recall that ν ≡ � α
1 −α + 2 � so that (1 − α) · (ν −

1) ≥ (1 − α) · ( α
1 −α + 1) = 1 . In turn, (1 − α) · (ν − 1) −

α ≥ 1 − α > 0 so that lim 

l→∞ 

(π∗N k l 
) (1 −α) ·(ν−1) −α = ∞ be- 

cause lim 

l→∞ 

π∗N k l 
= ∞ . Then, since lim 

l→∞ 

�N k l 

(π∗N k l 
) 1 −α > 0 and 

lim 

l→∞ 

(π∗N k l 
) (1 −α) ·(ν−1) −α = ∞ , taking l → ∞ on both sides 

of Eq. (C.74) implies R 1 = ∞ , which generates the desired 

contradiction. R 1 = ∞ is a contradiction because R 1 is a 

finite parameter of our model. �

Proof of Proposition 8. . As per the hypothesis of the result, 

we restrict only the transaction rate, �, and the network 

delay function, �(M) , in establishing this result. Our result 

is invariant to any given set of preference parameters in 

our model. 

Explicitly, we require that the transaction rate � corre- 

sponds to 150 million transactions per day. Moreover, we 

require that the network delay function, �(M) , be such 

that �(M) ≥ �, whereas � is given by empirical estimates 

in Croman et al. (2016) . 

It is useful to convert to seconds so the transaction rate, 

�, is given as follows: 

� = 

150 × 10 

6 transactions 

day 
× 1 day 

24 × 60 × 60 seconds 

= 1736 

transactions 

second 

(C.75) 

where we round down to the nearest integer. 

Croman et al. (2016) find that a 1 MB block possesses 

a median propagation time of 15.7 s. Our network delay 

function corresponds to the mean propagation time for a 

single transaction. Thus, assuming that the mean exceeds 

the median and that a 1 MB block has 20 0 0 transactions, 

the lower bound for network delay, �, can itself be 

bounded below as follows: 

� ≥ 15 . 7 seconds 

block 
× 1 block 

20 0 0 transactions 
(C.76) 

Note that the network delay data in 

Croman et al. (2016) is right-skewed, so our assumption 

regarding the mean exceeding the median is consistent 

with their data. Moreover, assuming 20 0 0 transactions per 

block is also consistent with the publicly available data on 

Bitcoin and is used in Huberman et al. (2021) . 

Turning to Proposition 8 (A), Eq. (5) implies: 

p ≡ P (F ork ) ≥ 1 − e −�� > 0 . 99 (C.77) 

which establishes the first part of Proposition 8 (A). For the 

second part of Proposition 8 (A), note that Lemma 1 im- 

plies that the blockchain is in a fork with probability 

1 − (1 − p) b , where p is the fork probability given by 

Eq. (C.77) , and b is the number of blocks on which the 

network must agree to regain consensus. Note that b ≥ 1 
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by definition so that 1 − (1 − p) b ≥ 1 − (1 − p) 1 = p > 0 . 99

thereby completing the proof of Proposition 8 (A). 

Turning to Proposition 8 (B), recall that the expected

wait time for any User i is bounded below by the con-

sensus wait time, and the consensus wait time is identical

across users. More explicitly, the following equation holds:

E [ W ( f i , f −i )] ≥ τ (�, �(M)) (C.78)

Then, since the consensus wait time increases in

network delay (see Lemma 6 ), �(M) ≥ � applied to

Eq. (C.78) yields: 

E [ W ( f i , f −i )] ≥ τ (�, �) (C.79)

In turn, computing τ directly yields (see Appendix Ap-

pendix B ): 

E [ W ( f i , f −i )] ≥ τ (�, �) � 1 year (C.80)

which thereby completes the proof. 

As a technical aside, the last computation requires a

value for b, and we use b = 6 . Moreover, for ease of com-

putation, we use 0.99 as the fork probability even though

p > 0 . 99 . Note that Lemma 6 implies that the computa-

tion for a fork probability of 0.99 will produce a lower

consensus wait time than that for p > 0 . 99 so that our

computations can be seen as a lower bound. Finally, per

Appendix Appendix B , the expected number of blocks to

regain consensus, ˜ τ , does not depend upon the block rate

independently of the transaction rate. In turn, the over-

all consensus wait time decreases in the block rate for a

given transaction rate and thus the consensus wait time is

lowest when the block rate is highest. Since the block rate

and block size are inversely proportional for a given trans-

action rate, the consensus wait time is lowest when the

block size is minimized, so we set block sizes to unity for

our computation. �

C4. Proofs for Sections 3 and 5 

Proof of Proposition 2. . For all N, the following holds true:

π∗ ≤
sup 

N∈ N 
π∗N 

N 

(C.81)

In turn, invoking sup 

N∈ N 
π∗N < ∞ from Proposition 6 im-

plies: 

lim sup 

N→∞ 

π∗ ≤ lim sup 

N→∞ 

sup 

N∈ N 
π∗N 

N 

= lim 

N→∞ 

sup 

N∈ N 
π∗N 

N 

= 0 

(C.82)

Finally, π∗ ∈ [0 , 1] for all N implies lim inf 
N→∞ 

π∗ ≥ 0 so

that Eq. (C.82) implies lim 

N→∞ 

π∗ = 0 , thereby completing the

proof. �

Proof of Proposition 3. . For all N, the following holds true:

π∗ ≤
sup 

N∈ N 
π∗N 

(C.83)

N 
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In turn, invoking sup 

N∈ N 
π∗N < ∞ from Proposition 7 im- 

plies: 

lim sup 

N→∞ 

π∗ ≤ lim sup 

N→∞ 

sup 

N∈ N 
π∗N 

N 

= lim 

N→∞ 

sup 

N∈ N 
π∗N 

N 

= 0 

(C.84) 

Finally, π∗ ∈ [0 , 1] for all N implies lim inf 
N→∞ 

π∗ ≥ 0 so 

that Eq. (C.84) implies lim 

N→∞ 

π∗ = 0 , thereby completing the 

proof. �

Proof of Proposition 4. . Lemma 8 yields: 

τ (�N , �(M)) ≥ e �N �(M) − 1 

�N 

(C.85) 

Note that e x − 1 = 

∑ ∞ 

n =1 
x n 

n ! so that e x − 1 ≥ x 2 

2 + x when 

x ≥ 0 . In turn, Eq. (C.85) implies: 

τ (�N , �(M)) ≥ �N �(M) 2 

2 

+ �(M) (C.86) 

From Proposition 1 v, M ≥ B 
β

> 1 so that �(M) ≥
�( B 

β
) > �(1) = 0 . As a consequence, Eq. (C.86) further im- 

plies: 

τ (�N , �(M)) ≥
�N �( B 

β
) 2 

2 

+ �( 
B 

β
) (C.87) 

so that taking N → ∞ on both sides implies 

lim 

N→∞ 

τ (�N , �(M)) = ∞ as desired. �

Proof of Proposition 5. . We provide a constructive proof. In 

particular, we explicitly specify �N such that there exists 

a full adoption equilibrium for all sufficiently large N (i.e., 

there exists N > 0 such that π∗ = 1 for all N > N and thus 

lim 

N→∞ 

π∗ = 1 > 0 ) and the mining network size diverges (i.e., 

lim 

N→∞ 

M = ∞ ). 

We specify the transaction rate as follows: �N = 

N−1 
2 . 

Note that �(M) = 0 implies �(�N , �(M)) = 

1 
�N 

. Then, via 

Proposition 1 (D), a full adoption equilibrium exists if: 

R 1 · N 

α + R 0 ≥ c 

�N 

+ (N − 1) 
c + c 

2�N 

= 

2 · c 

N − 1 

+ c + c 

(C.88) 

Note that: 

lim 

N→∞ 

(
R 1 · N 

α + R 0 − 2 · c 

N − 1 

− c − c 

)
= ∞ (C.89) 

which implies that Eq. (C.88) is satisfied for all N suffi- 

ciently large. In turn, via Proposition 1 (C), there exists an 

N > 0 such that π∗ = 1 for all N > N as desired. 

To complete the proof, we must demonstrate only that 

lim 

N→∞ 

M = ∞ . Proposition 1 (B) yields: 

M = M(c ∗) = 

B 

β
+ 

N(N − 1) 

6 β�N 

(c ∗ − c ) · (c 2 ∗ + c ∗c − 2 c 2 ) 

( c − c ) 2 

(C.90) 

Then, using �N = 

N−1 
2 and π∗ = 1 ⇔ c ∗ = c for N > N , 

Eq. (C.90) becomes: 

M = M( c ) = 

B 

β
+ 

N 

3 β
· c 

2 + c c − 2 c 2 

c − c 
(C.91) 
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which completes the proof. �
for N > N . Finally, taking N → ∞ in Eq. (C.91) yields: 

lim 

N→∞ 

M = lim 

N→∞ 

(
B 

β
+ 

N 

3 β
· c 

2 + c c − 2 c 2 

c − c 

)
= ∞ (C.92)

which completes the proof. �

Proof of Proposition 9. . Either R 1 · N 

α + R 0 ≥ c ·
�(�, �C (M( c ))) + (N − 1) × c + c 

2� or R 1 · N 

α + R 0 <

c · �(�, �C (M( c ))) + (N − 1) × c + c 
2� . We proceed by prov-

ing our result for each case in turn. 

Case 1: R 1 · N 

α + R 0 ≥ c · �(�, �C (M( c ))) + (N − 1) ×
c + c 
2�

In this case, Proposition 1 (D) implies that πC ∗ = 1 so

that πC ∗ ≥ πD ∗ follows trivially from πD ∗ ∈ [0 , 1] since πD ∗ ≤
1 = πC ∗ . 

Case 2: R 1 · N 

α + R 0 < c · �(�, �C (M( c ))) + (N − 1) ×
c + c 
2�

Note that Proposition 1 implies that πC ∗ < 1 in this case.

Moreover, note that Lemma 9 implies that: 

c · �(�, �C (M( c ))) + (N − 1) × c + c 

2�

≤ c · �(�, �D (M( c ))) + (N − 1) × c + c 

2�
(C.93)

so that: 

R 1 · N 

α + R 0 < c · �(�, �D (M( c ))) + (N − 1) × c + c 

2�
(C.94)

and thus Proposition 1 also implies that πD ∗ < 1 . More ex-

plicitly, Proposition 1 (C) implies that πD ∗ = 

c D ∗ −c 
c −c 

where c D∗
solves the following equation: 

R 1 · ( c 
D 
∗ − c 

c − c 
) α · N 

α + R 0 = c D ∗ �(�, �D (M(c D ∗ ))) 

+ 

N − 1 

c − c 
× (c D ∗ ) 2 − c 2 

2�
(C.95)

Lemma 9 implies: 

c D ∗ �(�, �D (M(c D ∗ ))) + 

N − 1 

c − c 
× (c D ∗ ) 2 − c 2 

2�

> c D ∗ �(�, �C (M(c D ∗ ))) + 

N − 1 

c − c 
× (c D ∗ ) 2 − c 2 

2�
(C.96)

so that Eq. (C.95) becomes: 

R 1 ·
(

c D ∗ − c 

c − c 

)α

· N 

α + R 0 > c D ∗ �(�, �C (M(c D ∗ ))) + 

N − 1 

c − c 

× (c D ∗ ) 2 − c 2 

2�
(C.97)

In turn, we define: 

�(x ) ≡ R 1 · ( x − c 

c − c 
) α · N 

α + R 0 −
(

c ∗�(�, �C (M(x ))) 

+ 

N − 1 

c − c 
× x 2 − c 2 

2�

)
(C.98)

so that Eq. (C.97) is equivalent to �(c D ∗ ) > 0 . Note

that the hypothesis of Case 2 (i.e., R 1 · N 

α + R 0 < c ·
�(�, �C (M( c ))) + (N − 1) × c + c 

2�
) is equivalent to �( c ) <
368 
0 . Then, �(c D ∗ ) > 0 , �( c ) < 0 and � being continuous im- 

plies there exists an x ∗ ∈ (c D ∗ , c ) such that �(x ∗) = 0 . Fur- 

ther, Proposition 1 (C) establishes that �(x ∗) = 0 implies 

c C ∗ = x ∗ > c D ∗ where the associated adoption cut-off is given 

by πC ∗ = 

c C ∗−c 
c −c 

. Finally, π k ∗ = 

c k ∗−c 
c −c 

for k ∈ { C, D } implies πC ∗ > 

πD ∗ , thereby completing the proof. �

Proof of Proposition 10. . We provide a constructive proof. 

In particular, we explicitly specify �N such that there ex- 

ists a full adoption equilibrium for all sufficiently large N

(i.e., there exists N > 0 such that π∗ = 1 for all N > N and 

thus lim 

N→∞ 

π∗ = 1 > 0 ) and the network size diverges (i.e., 

lim 

N→∞ 

M = ∞ ). 

Recall that �(�N , �(M)) = 

1 
�N 

+ τ (p F (�N , �(M)) , 

�N ) where τ (p F (�N , �(M)) , �N ) is defined in 

Appendix Appendix B and discussed after the proof of 

Lemma 7 . Note that we are not using Bitcoin’s fork proba- 

bility function and rather using a fork probability function 

as given by the hypothesis of this proposition (i.e., p F such 

that sup 

�, �
p F (�, �) < 1 ). Then, via Proposition 1 (D), a full 

adoption equilibrium exists if: 

R 1 · N 

α + R 0 ≥ c ×
(

1 

�N 

+ τ (p F (�N , �(M)) , �N ) 
)

+(N − 1) 
c + c 

2�N 

(C.99) 

We select the transaction rate to vary according to 

�N = 

N−1 
2 , which implies that Eq. (C.99) becomes: 

R 1 · N 

α + R 0 ≥ c ×
(

1 

�N 

+ τ (p F (�N , �(M)) , �N ) 
)

+ c + c

(C.100) 

Then, Lemma 7 yields that lim 

N→∞ 

τ (p F (�N , �(M)) , 

�N ) = 0 so that: 

im 

→∞ 

(
R 1 · N 

α + R 0 − c ×
(

1 

�N 

+ τ (p F (�N , �(M)) , �N ) 
)

−c − c 

)
= ∞ (C.101) 

which implies that Eq. (C.99) is satisfied for all N suffi- 

ciently large. In turn, via Proposition 1 (C), there exists an 

N > 0 such that π∗ = 1 for all N > N as desired. 

To complete the proof, we must demonstrate only that 

lim 

N→∞ 

M = ∞ . Proposition 1 (B) yields: 

M = M(c ∗) = 

B 

β
+ 

N(N − 1) 

6 β�N 

(c ∗ − c ) · (c 2 ∗ + c ∗c − 2 c 2 ) 

( c − c ) 2 

(C.102) 

Then, using �N = 

N−1 
2 and π∗ = 1 ⇔ c ∗ = c for N > N , 

Eq. (C.102) becomes: 

M = M( c ) = 

B 

β
+ 

N 

3 β
· c 

2 + c c − 2 c 2 

c − c 
(C.103) 

for N > N . Finally, taking N → ∞ in Eq. (C.103) yields: 

lim 

N→∞ 

M = lim 

N→∞ 

(
B 

β
+ 

N 

3 β
· c 

2 + c c − 2 c 2 

c − c 

)
= ∞ (C.104) 
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