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a b s t r a c t 

Blockchain technologies are considered one of the most disruptive innovations of the last decade, enabling se- 

cure decentralized trust-building. However, in recent years, with the rapid increase in the energy consumption 

of blockchain-based computations for cryptocurrency mining, there have been growing concerns about their sus- 

tainable operation in electric grids. This paper investigates the tri-factor impact of such large loads on carbon 

footprint, grid reliability, and electricity market price in the Texas grid. We release open-source high-resolution 

data to enable high-resolution modeling of influencing factors such as location and flexibility. We reveal that 

the per-megawatt-hour carbon footprint of cryptocurrency mining loads across locations can vary by as much as 

50% of the crude system average estimate. We show that the flexibility of mining loads can significantly mitigate 

power shortages and market disruptions that can result from the deployment of mining loads. These findings 

suggest policymakers to facilitate the participation of large mining facilities in wholesale markets and require 

them to provide mandatory demand response. 
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. Introduction 

To grapple with the challenge of planetary-scale climate change,

ountries around the world are setting aggressive agendas towards car-

on neutrality by mid 21st century, and electricity sector plays a pivotal

ole in achieving this goal [1] . In the U.S., especially in Texas, there is

 sharp increase of electrical loads that power blockchain-based proof-

f-work computation of cryptocurrency mining. Specifically, between

019 and 2022, U.S. hash rate share, the computational power required

o mine new cryptocurrencies, increased notably from nearly 4 percent

o 37 percent, and its power consumption increased from 300 MW to

.7 GW [2] . A substantial percentage of these mining activities is hap-

ening in Texas, where there is currently more than 1.5 GW of mining

apacity operating, and it is expected to attract nearly 2 GW of addi-

ional load per year [3] . Such a rapid increase in the energy consumption

f blockchain-based computations for cryptocurrency mining has raised

oncerns about their sustainable operation in electric grids. Therefore,

t is necessary to have a scientific, comprehensive understanding of the

mpact of mining loads. 
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While the area of digital assets and cryptocurrency are of high in-

erest to society at large, its energy and environmental impact due to

ts high energy intensity remains largely unknown. Most of the recent

cholarly studies [4–10] and reports [1,2] draw their conclusions based

n aggregated, low granularity data such as monthly or regional power

onsumption. This paper reveals for the first time higher-granularity

ata and provides insight that analyzes the impact of cryptocurrency

ining on carbon footprint, system reliability, and market prices. To

ive a preliminary understanding of cryptocurrency mining loads, we

nalyze the correlation between cryptocurrency mining loads and ex-

ernal factors such as market price or electricity scarcity, using real data

rom the Texas grid ( Fig. 1 and Table 1 ). During the summer peak of

022, the daily LMP fluctuated significantly, where the high demand

uring peak hours (2–5 pm) created congestion in the system and led to

arge LMP spikes. Cryptocurrency mining loads showed strongly nega-

ive correlations with system-wide average local marginal price (LMP)

nd system-wide total load during these hours, while non-mining loads

howed positive correlations. While it is difficult to deduce whether

he root cause is mandatory demand response orders or spontaneous
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Fig. 1. Negative correlation between real-world average LMP and mining load. 

Table 1 

Correlation between total mining load, system-wide average LMP, and system- 

wide net load. 

Correlation between Whole period a Summer peak b 

Total mining load and system-wide average LMP − 0.042 − 0.517 

Total mining load and system-wide net load 0.0667 -0.757 

Non-mining load and system-wide average LMP 0.009 0.378 

Non-mining load and system-wide net load 0.922 0.971 

a The whole period refers to the period from January 1st, 2021 to October 

19th, 2022. 
b The summer peak time refers to the period from July 7th, 2022 to July 21st, 

2022. 
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E  
esponses to high LMP, cryptocurrency mining loads are proved to be

ighly flexible, demonstrating the necessity of high-resolution modeling

nd analysis. 

We summarize our main contributions as follows: 

• We develop an open-access tool that combines a large-scale grid

model and high-resolution data to model cryptocurrency mining

loads in grid operations under different scenarios, enabling a sci-

entific, detail-oriented way to quantify the impact of cryptocurrency

mining on the electricity sector. 
• We study the location of cryptocurrency mining loads as a critical

factor impacting carbon emissions. We show that the per-unit carbon

footprint of mining loads exhibits locational disparity. Specifically,

low-electricity-price locations can reduce per-unit carbon emission

below 50% of the system-wide average, while close-to-renewable lo-

cations do not necessarily lead to low carbon emission. 
• We demonstrate that the flexibility of cryptocurrency mining loads

plays a pivotal role in the reliability of electricity systems and the

stability of electricity markets. We show that while the reliability

of electric systems with higher renewable penetration is more sus-

ceptible to the integration of mining loads, full flexibility at all times

can significantly avoid the reliability concerns created by the mining

loads. We also show that a profit-driven price-responsive mining fa-

cility that only mines when the real-time local marginal price (LMP)

is below $40 per mega-watt-hour (MWh) can significantly mitigate
extremely high LMPs across the system. p  

2 
. Results 

.1. Per unit carbon footprint of cryptomining has high locational disparity 

The results suggest that the per unit carbon footprint of cryptocur-

ency mining has high heterogeneity across different locations in the

ynthetic Texas grid ( Fig. 2 ). Here, the carbon footprint of cryptocur-

ency mining loads at a certain location is defined as the difference be-

ween the system-wide total carbon emission of the base system and that

f the system with mining loads (see formal formulation in Section 4.4 ).

s shown in Fig. 2 (b), adding new cryptocurrency mining loads in low

MP locations, such as Loc-B, could potentially lead to a per-unit car-

on footprint below 50% of the system average. On the other hand,

ntegrating new loads in close-to-renewable locations, such as Loc-A1

nd Loc-A2, can lead to per-MWh carbon footprints close to the system

verage. More details of location selection, flexibility mechanisms, and

imulation process are available in Section 4 , and more results are avail-

ble in Supplemental Figs. S1 and S2. The results can be explained using

 similar approach to the calculation of LMP. 

Extensive research has shown that the LMP at a bus without local

arginal generators is determined by an affine function of the marginal

osts of generators located elsewhere. The coefficients in this function

orrespond to the change in active power of corresponding marginal

enerators in response to a hypothetical increase in load [11] . Further-

ore, as per the definition of carbon footprint associated with increasing

oads in Section 4.4 , the carbon footprint is also an affine function of the

hanges in carbon footprint of marginal generators, with the same co-

fficients as those in the affine function of LMP. Additionally, the simu-

ation model’s generation bidding curves and life-cycle carbon emission

actors demonstrate a strong correlation between a generator’s marginal

ost and its per-MWh life-cycle carbon emission [2] . Therefore, the LMP

t a bus serves as a reliable indicator of local per-unit carbon emission.

n the other hand, as has been widely studied, the LMP at buses with-

ut local marginal generators can be higher, lower, or somewhere in

etween those at buses with marginal generators, which is not necessar-

ly explicitly indicated by geographical locations. Observations through

ulti-day simulation also show that for most buses, including close-to-

enewable buses, their LMPs are close to the system average, except for

he selected low LMP locations. Therefore, close-to-renewable locations

imply selected by geographic information-based criteria do not nec-

ssarily have low LMPs and hence do not necessarily indicate a lower

er-unit carbon footprint. 

The results indicate that conventional crude estimations of cryp-

ocurrency mining’s carbon footprint can be significantly off the mark.

o accurately evaluate the carbon footprint of mining loads, it is neces-

ary to incorporate location-in-the-grid. For example, the carbon emis-

ions per MWh of individual miners and large-scale mining facilities

ay be quite different, because individual miners are typically concen-

rated in populated high-load areas where the LMP is typically relatively

igh, while large-scale mining facilities tend to be deployed in rural

reas where LMPs are highly likely low. Spatial analysis of cryptocur-

ency miners’ carbon footprints could also help policymakers determine

roper carbon credit and tax policies to encourage miners in choosing

ocations with lower carbon emissions. Moreover, we hope this analysis

ill inspire researchers in the broader energy field to investigate how

o scientifically calculate the carbon footprint of individual components

n a networked system, where changes in individual components affect

arbon emitters in complex ways. 

.2. Flexibility enhances system reliability 

To capture the impact of cryptocurrency miners on the safe operation

f the grid, we add different amounts of mining load into the system and

lot the reliability index of Loss of Load Hourly (LOLH) and Expected

nergy Not Served (EENS), which capture the expected number of hours

er year that a system cannot serve load, and the expected energy that
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Fig. 2. Carbon footprint per unit of cryptocurrency mining loads across the grid shows high inhomogeneity. (a) Visualization of mining loads in synthetic Texas 

electricity grid, including close-to-renewable locations Loc-A1 and Loc-A2, and low-electricity-price locations Loc-B. (b) Carbon footprint per MWh of total loads 

(Base), constant mining loads at Loc-A1 (CC-A1), Loc-A2 (CC-A2) and Loc-B (CC-B), and price-responsive mining loads at Loc-B (PR-B). 

i  

i  

i  

g  

m  

i  

t  

n  

t  

i  

n  

M  

a

 

s  

d  

t  

a  

a  

s  

i  

i  

t  

p

 

t  

W  

a  

y  

2  

a  

2  

i  

f  

s  

i  

m  

c  

o

2

 

t  

m  

e  

o  

p  

p  

a  

a  

t  

b

 

e  

s  

v  

b  

m  

s  

p

 

i  

f  

r  

(  

m  

i  

s  

F  

s  

b  

o  

t  

P  

t

 

F  

r  

a

3

 

i  

g  

I  

e  
s not served, respectively. As shown in Fig. 3 adding more mining loads

ncreases both LOLH and EENS which leads to more frequent reliability

ncidents. In the coming years, with growing renewable sources on the

rid, uncertainty and intermittency of the generation side will increase,

aking the system more susceptible to non-flexible loads. Demand flex-

bility is a potential solution to address the growing mismatch between

he load and generation. Our results also suggest that in the future sce-

arios, both LOLH and EENS grow with a much faster rate compared

o the current system ( Fig. 3 a.1 and b.1). The impact of mining loads

s more detrimental in future scenario 2, with higher penetration of re-

ewable energy and a larger increase in firm load ( Fig. 3 a.1 and b.1).

ore details of the future scenario creation and reliability assessment

re available in the Experimental Procedure. 

Cryptocurrency mining loads are profit-driven, and they tend to in-

tall substantial amounts of loads in a short period of time. Hence, it is

ifficult to perform conventional planning studies on time, and incen-

ives new generators to cover the extra load on the system. The gener-

tion inadequacy can be solved by exploiting mining loads’ flexibility

nd requiring them to operate during periods that will not compromise

ystem reliability. As shown in ( Fig. 3 a.2 and b.2), without flexibil-

ty, adding mining loads threatens system reliability and significantly

ncreases LOLH and EENS. On the other hand, complete or even par-

ial flexibility, could potentially mitigate reliability incidents and com-

letely offset the adverse impact of new mining loads. 

It can be seen that for a system with 10 GW of added mining load,

he LOLH and EENS are nearly 25 h and 47 GWh per year, respectively.

hich means that the detrimental impact of mining loads could be fully

voided without major economic loss (at most 25 h of halted mining per

ear). In a future scenario ( Fig. 3 a.3), this number increases to nearly

00 h, which from a reliability perspective is a critical number, but from

 cryptocurrency miner’s point of view, it translates to not mining for

00 h a year on average. Hence, cryptocurrency miner’s demand flex-

bility is a win-win solution for them and the system operator. There-

ore, modeling cryptocurrency mining as ǣcomplete ǥ flexible demand is

hown not to be detrimental to power grid reliability even with signif-

cant amounts at certain locations. Policymakers could consider these

ining loads as virtual power plants capable of participating in the an-

illary service market and account for their short- and long-term impacts

n system reliability. 

.3. Flexibility mitigates market price volatility 

Market clearing price in many wholesale electricity markets is

ypically determined by LMP. LMPs are characterized by statuses of
3 
arginal generating units and congestion of transmission lines. Deliv-

ring energy from a generator to a consumer at different location not

nly causes energy losses but also may overload the transmission lines, a

henomenon called congestion. LMPs tend to be volatile with the high

rice for the supply shortage and congestion in transmission line and

lmost zero price for the excessive supply, posing risks for the gener-

tion investment. The former is often observed during peak hours and

he latter is often observed when abundant renewable energy exists in

ulk power systems. 

We investigate the roles of cryptocurrency mining loads on LMPs

specially in terms of flexibility. We select three sets of locations on a

ynthetic Texas grid shown in Fig. 2 b (Loc-A1, Loc-A2, Loc-B) and in-

estigate capacity, location and flexibility of mining loads in the 2000-

us system. Given both location and capacity of mining facilities deter-

ined, SCUC and SCED problems are solved to choose online/offline

tatus of generating units and LMPs. Detailed simulation procedure is

rovided in Experimental Procedures. 

Figure 4 illustrates an instance of disruptions driven by mining loads

n terms of price volatility. Figure 4 (a)–(c) represent county-level LMPs

or base case (without mining loads), constant mining loads, and price-

esponsive mining loads respectively. Observe that county-level LMPs

averaged LMP value for each county) for base case and price-responsive

ining loads are almost identical that there only is negligible difference

n LMPs whereas there are significant changes in Fig. 4 (b). Figure 4 only

hows an instance, yet we provide detailed statistics in Supplementary

ig. S3. To remind the readers, any types of load growth will lead to the

ame disruptions while our focus is especially in terms of mining loads

ecause they are growing in an unprecedented level. Therefore, based on

ur findings, it is essential to design new electricity market structures

o maximally exploit the value of demand flexibility in mining loads.

rice-responsive behavior of these loads could potentially mitigate all

heir disruptive impact on the electricity market. 

A summary of our results and observations is presented in Table 2 .

uture work will examine the impact of co-locating mining loads with

enewable generation to further enable cryptocurrency miners’ sustain-

ble operation. 

. Conclusion 

This study uses high-resolution data to examine the effects of expand-

ng cryptocurrency mining operations on the large-scale Texas power

rid, focusing on carbon emissions, grid stability, and electricity prices.

n contrast to previous research that used system-wide average carbon

mission as a measurement, we found large variations in the carbon foot-
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Fig. 3. System reliability of different scenarios with different size and types of cryptocurrency mining loads as indicated by the loss of load hourly (a.1, a.2, a.3) and 

expected energy not served (b.1, b.2, b.3). 1. Comparison of the impact of non-flexible mining loads in the current scenario, future scenario 1 with 10% more load 

and 50% more renewables on the top of the current scenario, and future scenario 2 with 20% more load and 100% more renewables on top of the current scenario. 

2. Comparison of different flexibility of mining loads in the current system scenario. 3. Comparison of the impact of mining loads with different flexibility in the 

future scenario 2. 

Fig. 4. County-level LMP in the systems with or without different types of cryptocurrency mining loads. (a) LMP in the base system without cryptocurrency mining 

loads. (b) LMP in the system with constant cryptocurrency mining loads at Loc-B. (c) LMP in the system with price-responsive cryptocurrency mining loads at Loc-B 

that only turn on mining when the real-time local marginal price is below $40/MWh. 

Table 2 

Summary of cryptocurrency mining’s impact on system reliability, carbon footprint, and electricity market. 

System reliability Carbon footprint Electricity market 

Flexibility Load flexibility could potentially avoid all 

reliability concerns without major 

economic loss 

The impact of demand flexibility on per MWh 

carbon emissions is not significant 

Price-responsive flexible operation of mining loads 

could mitigate market disruptions 

Location N/A Low electricity price locations can control carbon 

emission below 50% of system-wide average 

Depending on the location, cryptominers impact 

on electricity market is highly non-uniform 

p  

a  

t  

c  

w

 

c  

t  

T  

p  

l  

o  

t  

f  

w

4

4

 

T  

d  

m  
rint of cryptocurrency mining across different locations, which can be

s much as 50% of the crude system average. Considering the fast in-

egration of new mining facilities, offering proper financial incentives

ould potentially encourage the new facilities being built in locations

ith lower carbon footprint and high societal benefit. 

Our findings indicate that the flexibility of cryptocurrency mining

an greatly mitigate potential market disruption, while its impact on

he electricity market can vary significantly depending on its location.

his suggests that both location and flexibility are critical factors that

olicymakers and grid operators should consider when designing ancil-

ary service programs that take advantage of the unique characteristics

f the mining loads and enhance their grid-supporting capabilities. Fur-
4 
hermore, our analysis shows that treating cryptocurrency mining as

ully flexible demand does not negatively impact grid reliability, even

hen present in large quantities at specific locations. 

. Experimental procedures 

.1. Data processing 

The data was obtained through the Electric Reliability Council of

exas (ERCOT) with permission to publish at county-level. The original

ata included the Supervisory Control and Data Acquisition (SCADA)

easurements of twenty Large Flexible Loads (LFLs) within the ERCOT
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S  
ystem at 5-min intervals from January 1st, 2021 to December 31st,

022. The LFLs span across twelve counties and the average hourly to-

al consumption in each county is calculated. During the data cleaning

rocess, we noticed erroneous measurements that showed large spikes

r negative values, these data points were filled with the previous value

r set to zero, respectively. The county-level minimum mining capacity

s 80 MW and the maximum mining capacity is 640 MW. However, it

hould be noted there is a large difference between the mining capac-

ty and actual measured demand because many facilities are still in the

rocess of expanding. 

.2. System configuration 

In this paper, we quantify the impact of cryptocurrency mining loads

ith different flexibility at different locations in different system sce-

arios by simulating a large-scale synthetic Texas grid. Therefore, this

ubsection will first describe the base system model, and then introduce

he criteria for selecting cryptocurrency mining sites, designing flexibil-

ty mechanisms, and projecting future scenarios. 

.2.1. Base grid model 

A calibrated large-scale synthetic Texas grid is used for optimal

cheduling in this study [12] , which has been used in the studies of

ong-term planning [12] , extreme event analysis [13,14] , and electric-

ty market analysis [15] . This base grid model provides system topol-

gy, cost curves for fossil fuel generation units, renewable generation

rofiles, and base load profiles. More details of system calibration and

ata aggregation are described in the paper [12] . For the forecasted load

rofiles, we aggregate zonal load profiles in 2020, and make appropriate

djustments (see Supplemental Note S2). 

.2.2. Cryptocurrency mining deployment 

The step of cryptocurrency mining deployment aims to determine a

et of buses with cryptocurrency mining loads  and capacity of cryp-

ocurrency mining loads 𝑃 
m 

. We consider four categories of cryptocur-

ency mining sites, including close-to-renewable, close-to-city, low-

lectricity-price, and real-mining sites. For close-to-renewable sites, we

anually select buses that are geographically close to solar or wind

eneration. For close-to-city sites, we manually select buses that are

eographically close to cities. For low-electricity-price sites, we select

uses with the lowest LMP under the condition of optimal scheduling

f the base system that has  = ∅ (see Model-based Simulation Pro-

ess). For real-mining sites, we select all buses in the counties where the

FLs recorded by the SCADA data are located. For the former three cat-

gories, we define a uniform, constant capacity for all cryptocurrency

ining loads. For real-mining sites, we define time-varying capacity of

ach mining load by scaling the LFL profile in the corresponding county

o reflect the recorded dynamic power consumption of LFLs. Visualiza-

ion of cryptocurrency mining loads is shown in Supplemental Fig. S1

nd more details of settings are described in Supplemental Note S1. 

.2.3. Flexibility mechanism design 

The flexibility mechanism determines actual power consumption

rofiles of cryptocurrency mining loads 𝑃 m , which will be added to load

rofiles in simulation. We assume each cryptocurrency mining load has

ne binary state, namely, fully off or fully operational. Three types of

exibility mechanisms are considered in this study, including no flexi-

ility ( Eq. (1a) ), price-responsive flexibility ( Eq. (1b) ), and command-

ollowing flexibility ( Eq. (1c) ). Specifically, the power consumption of

ryptocurrency mining loads with different flexibility is defined by 

 

m 

𝑖ℎ𝑑 
= 

{ 

𝑃 
m 

𝑖 
if 𝑖 ∈  

0 otherwise 
(1a) 

 

m 

𝑖ℎ𝑑 
= 

{ 

𝑃 
m 

𝑖 
if 𝑖 ∈  and 𝜇𝑖ℎ𝑑 ≤ 𝜇

0 otherwise 
(1b) 
5 
 

m 

𝑖ℎ𝑑 
= 

{ 

𝑃 
m 

𝑖 
if 𝑖 ∈  and not 

(
𝟙 ctx 
𝑖ℎ𝑑 

and 𝟙 cmd 
𝑖ℎ𝑑 

)
0 otherwise 

(1c) 

here 𝑃 m 

𝑖ℎ𝑑 
is the active power consumption of the cryptocurrency min-

ng load at bus 𝑖 at hour ℎ on day 𝑑, 𝑃 
m 

𝑖 
is the installed capacity of the

ryptocurrency mining load at bus 𝑖 ,  is a set of buses with cryptocur-

ency mining loads, 𝜇𝑖ℎ𝑑 is the LMP at bus 𝑖 at hour ℎ on day 𝑑, 𝜇 is a

re-defined threshold that is set as $40 /MWh in this study, 𝟙 cmd 
𝑖ℎ𝑑 

indi-

ates whether system operators order a shutdown at the given moment,

nd 𝟙 ctx 
𝑖ℎ𝑑 

indicates whether the cryptocurrency mining load provides de-

and response services at the given moment. 

These flexibility mechanisms are designed considering real-world de-

and response programs currently adopted by cryptocurrency mining

acilities. As it can be seen, in the price-responsive flexibility ( Eq. (1b) )

ryptominers stop mining if the electricity prices are greater than a

ertain threshold ( 𝜇). This threshold either depends on their opera-

ional profit and their break-even electricity price, or it is determined

y a demand response contract with their electric utility company. An-

ther practical flexibility mechanism is command-following ( Eq. (1c) ),

n which the mining loads receive a command from the grid operator

o shut down their load, and depending on their obligation, they might

ecide to keep mining or reduce their load as requested by the operator.

.2.4. Future scenario creation 

To compare the impact of cryptocurrency mining on system reliabil-

ty, we study the current synthetic grid and a future grid representing

he generation mix change in Texas. Currently, the peak load in Texas

s nearly 77 GW, but this load is predicted to reach 87 GW to 93 GW by

030, depending on the potential of load reduction programs [16] . This

ncrease in firm load is nearly 10% to 20% of the current load. At the

ame time, the generation mix is undergoing substantial change and it is

oving toward a highly renewable grid. While the traditional gas, coal,

nd nuclear generator capacities will not see a major change, the renew-

ble generation capacity is expected to grow substantially. By 2030, the

mount of renewable generation is planned to increase from 17,000 MW

o nearly 41,500 MW [16] . Hence, we project 50% to 100% of poten-

ial increase in the renewable generation capacity in Texas. Therefore,

wo future scenarios are designed in our simulations. In scenario 1, the

ynthetic Texas grid’s base load is increased by 10% and the renewable

eneration capacity is increased by 50%, and in scenario 2, the base load

s increased by 20% and the renewable generation capacity is increased

y 100%. 

.3. Model-based simulation process 

The process of optimal scheduling consists of alternating security-

onstrained unit commitment (SCUC) and security-constrained eco-

omic dispatch (SCED), mimicking day-ahead and real-time electricity

arket clearing processes. SCUC is used for day-ahead market clearing

nd aims to find optimal commitments and dispatch decisions based

n day-ahead load and renewable forecasts. SCED is used for real-time

arket clearing and aims to find more accurate dispatch decision based

n solved optimal commitments and accurate short-term load and re-

ewable forecasts. Please refer to the previous study [15] for detailed

athematical formulation of SCUC and SCED. 

It is worth noting that we make a few assumptions and simplifica-

ions for simulation. First, we assume high accuracy of load and renew-

ble generation forecasts. Therefore, SCUC and SCED share the same

eterministic load and renewable generation profiles in this study. Sec-

nd, we only consider cryptocurrency mining loads with no flexibility

r price-response flexibility for simulation. Third, we assume that the

eneration states in an optimal UC solution are not affected by the min-

ng load behavior, so for simplicity assume no flexibility for all mining

oads for SCUC. Therefore, SCUC and SCED have one key difference in

his study. Only the generation output { 𝑃 g 
𝑖ℎ𝑑 

} and LMP { 𝜇𝑖ℎ𝑑 } solved by

CED are used for the analysis of carbon footprint and market prices,
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hile those solved by SCUC are only a reference for cryptocurrency min-

ng loads with price-response flexibility. 

We design and implement Algorithm 1 by MATPOWER optimal

cheduling tool (MOST) [17] , where  represents a grid model,  is

 set of buses with cryptocurrency mining loads, 𝑃 
m 

is installed capac-

ty of all cryptocurrency mining loads, 𝑃 l is base load profiles, and 𝐷 1 
nd 𝐷 𝑇 are the start and end dates of the period of interest. In sum-

ary, through the process of optimal scheduling, we can finally obtain

ourly LMP { 𝜇𝑖ℎ𝑑 } , generation output { 𝑃 g 
𝑖ℎ𝑑 

} and cryptocurrency mining

ower consumption { 𝑃 m 

𝑖ℎ𝑑 
} . It is worth noting that a minor fraction of

ays in some scenarios is excluded due to infeasible SCUC solutions (see

upplemental Note S2). 

lgorithm 1 Process of optimal scheduling by alternating SCUC and

CED. 

Input:  ,  , 𝑃 
m 

𝑖 
, 𝑃 l 

𝑖ℎ𝑑 
, 𝐷 1 , 𝐷 𝑇 

Output: { 𝑃 g 
𝑖ℎ𝑑 

} , { 𝜇𝑖ℎ𝑑 } , { 𝑃 m 

𝑖ℎ𝑑 
} 

for 𝑑 = 𝐷 1 , … , 𝐷 𝑇 do 

Initialize 𝑈 

g 0 
𝑖 

← 𝑈 

g 

𝑖 ( 24 ) ( 𝑑−1 ) , 𝑖 = 1 , … , 𝑁 , ⊳ Start day-ahead

market clearing by SCUC 

Initialize 𝑃 m 

𝑖ℎ𝑑 
based on Eq. 1a given  and 𝑃 

m 

𝑖 
, 𝑖 = 1 , … , 𝑁 , ℎ =

1 , … , 24 , 
Calculate 𝑃 ttl 

𝑖ℎ𝑑 
← 𝑃 m 

𝑖ℎ𝑑 
+ 𝑃 l 

𝑖ℎ𝑑 
, 𝑖 = 1 , … , 𝑁 , ℎ = 1 , … , 24 , 

{ 𝑈 

g 

𝑖ℎ𝑑 
} 24 
ℎ =1 , { 𝑃 

g 

𝑖ℎ𝑑 
} 24 
ℎ =1 , { 𝜇𝑖ℎ𝑑 } 

24 
ℎ =1 ← SCUC 

(
 , 𝑈 

g 0 
𝑖 
, { 𝑃 ttl 

𝑖ℎ𝑑 
} 24 
ℎ =1 

)
if price-response flexibility then ⊳ Start real-time market

clearing by SCED 

Update 𝑃 m 

𝑖ℎ𝑑 
based on Eq. 1b given  , 𝑃 

m 

𝑖 
, and { 𝜇𝑖ℎ𝑑 } 24 ℎ =1 , 𝑖 =

1 , … , 𝑁 , ℎ = 1 , … , 24 , 
Update 𝑃 ttl 

𝑖ℎ𝑑 
← 𝑃 m 

𝑖ℎ𝑑 
+ 𝑃 l 

𝑖ℎ𝑑 
, 𝑖 = 1 , … , 𝑁 , ℎ = 1 , … , 24 , 

end if 

{ 𝑃 g 
𝑖ℎ𝑑 

} 24 
ℎ =1 , { 𝜇𝑖ℎ𝑑 } 

24 
ℎ =1 ← SCED 

(
 , { 𝑈 

g 

𝑖ℎ𝑑 
} 24 
ℎ =1 , { 𝑃 

ttl 
𝑖ℎ𝑑 

} 24 
ℎ =1 

)
end for 

.4. Carbon footprint calculation 

We define the carbon footprint of cryptocurrency mining loads 𝐶 

m 

s the difference between the system-wide total carbon emission of the

ase system 𝐶 and that of the system with mining loads 𝐶̂ by 

 = 

𝐷 𝑇 ∑
𝑑= 𝐷 1 

24 ∑
ℎ =1 

𝑁 ∑
𝑖 =1 

𝑃 
g 

𝑖ℎ𝑑 
⋅ 𝜙𝑖 , (2a) 

̂
 = 

𝐷 𝑇 ∑
𝑑= 𝐷 1 

24 ∑
ℎ =1 

𝑁 ∑
𝑖 =1 

𝑃 
g 

𝑖ℎ𝑑 
⋅ 𝜙𝑖 , (2b) 

 

m = 𝐶 − 𝐶̂ , (2c) 

here 𝑃 
g 

𝑖ℎ𝑑 
is the active power output of generator 𝑖 at hour ℎ on day 𝑑 in

he base system, 𝑃 
g 

𝑖ℎ𝑑 
is the active power output of generator 𝑖 at hour ℎ

n day 𝑑 in the system with mining loads, 𝜙𝑖 is the life-cycle greenhouse

mission factors of generator 𝑖 determined by the generation type [2] ,

is the total number of buses, and 𝐷 1 and 𝐷 𝑇 are the start and end

ates of the period of interest. 

Further, we define the per unit energy consumption carbon footprint

f system loads 𝐶̄ and cryptocurrency mining loads 𝐶̄ 

m by 

̄
 = 𝐶 

/ ( 

𝐷 𝑇 ∑
𝑑= 𝐷 1 

𝐻 ∑
ℎ =1 

𝑁 ∑
𝑖 =1 

𝑃 l 
𝑖ℎ𝑑 

) 

, (3a) 

̄
 

m = 𝐶 

m 

/ ( 

𝐷 𝑇 ∑
𝑑= 𝐷 1 

𝐻 ∑
ℎ =1 

𝑁 ∑
𝑖 =1 

𝑃 m 

𝑖ℎ𝑑 

) 

, (3b) 
6 
here 𝑃 l 
𝑖ℎ𝑑 

is the active power consumption of the load at bus 𝑖 at hour

 on day 𝑑 in the base system, and 𝑃 m 

𝑖ℎ𝑑 
is the active power consumption

f the cryptocurrency mining load at bus 𝑖 at hour ℎ on day 𝑑 in the

ystem with mining loads. 

Comparing to methods that estimate carbon footprint based on the

verage generation mix, this approach can incorporate the nonlinear

patial-temporal relation between loads and generators in the process

f optimal scheduling. 

.5. Reliability assessment 

For reliability assessment, we use the Monte-Carlo method to sim-

late the randomness in the failure and repairs of the generators. In

he Monte-Carlo method, each generator has a Mean Time to Failure

MTTF), which is the expected number of hours the generator will op-

rate before it fails, and a Mean Time to Repair (MTTR), which is the

xpected number of hours it takes to bring the generator back into op-

ration. These numbers are obtained from the standard IEEE Reliability

est System [18] . The failure (repair) time of each generator is randomly

enerated from an exponential distribution with MTTF (MTTR) as its

ean value. We do not consider a failure rate for renewable generators,

ut their output is fluctuating and highly uncertain. Using the genera-

ion and load profiles obtained from the synthetic grid, we repeat the

imulation 10,000 times until the reliability indices start to converge. 

We calculate the Loss of Load Hourly (LOLH) as the reliabil-

ty/adequacy index, which captures the expected number of hours per

ear that the system cannot serve load. The LOLH is calculated for the

urrent synthetic grid and two future scenarios, where in scenario 1

scenario 2), today’s synthetic grid is updated by increasing the load by

0% (20%) and increasing the renewable generation capacity by 50%

100%). 

.6. Market price analysis 

For ease of visualization, given hourly nodal LMP { 𝜇𝑖ℎ𝑑 } , we define

he average LMP in county 𝑘 by 

̄
cty 

𝑘ℎ𝑑 
= 1∕ |𝑧 𝑘 | ⋅ ∑

𝑗∈𝑧 𝑘 

𝜇𝑗ℎ𝑑 , (4)

here 𝑧 𝑘 is the set of buses in county 𝑘 . 

ata and code availability 

The data, model and codes for all the analyses in this paper

re publicly available at the Github repository https://github.com/

amu- engineering- research/Crypto _ mining _ impacts . 
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