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The environmental burden of the United
States’ bitcoin mining boom

Gianluca Guidi 1,2,3, Francesca Dominici 1 , Nat Steinsultz4,
Gabriel Dance 5, Lucas Henneman 6, Henry Richardson4, Edgar Castro 7,
Falco J. Bargagli-Stoffi 1,7,9 & Scott Delaney 8,9

Bitcoin mines—massive computing clusters generating cryptocurrency tokens
—consume vast amounts of electricity. The amount of fine particle (PM2.5) air
pollution created because of their electricity consumption and its effect on
environmental health is pending. In this study, we located the 34 largest mines
in the United States in 2022, identified the electricity-generating plants that
responded to them, and pinpointed communities most harmed by Bitcoin
mine-attributable air pollution. From mid-2022 to mid-2023, the 34 mines
consumed 32.3 terawatt-hours of electricity—33%more than Los Angeles—85%
of which came from fossil fuels. We estimated that 1.9 million Americans were
exposed to ≥0.1μg/m3 of additional PM2.5 pollution from Bitcoin mines, often
hundreds of miles away from the communities they affected. Americans living
in four regions—including New York City and near Houston—were exposed to
the highest Bitcoin mine-attributable PM2.5 concentrations (≥0.5μg/m

3) with
the greatest health risks.

Exposure to fine particle air pollution (PM2.5, particles with aero-
dynamic diameter ≤2.5 µm) from coal- and natural gas-fired electricity
generating units (i.e., fossil fuel power plants) is associated with
increased prematuremortality and other adverse health outcomes1. As
a result, policymakers have sought to curb relianceon fossil fuel power
plants, thereby reducing public health harm from the air pollution they
emit2. In the United States (U.S.), continuing progress could be hin-
dered by the rapid rise of new, energy-intensive computing operations
that require vast amounts of electricity, including companies thatmine
Bitcoin and other cryptocurrencies3,4.

In 2019, China dominated global Bitcoin mining, accounting for
65-75% of the total Bitcoin network5. In 2021, China banned crypto-
currencymines, partly given their prodigious electricity use, andmany
mining companies moved to the U.S6. The share of global Bitcoin
mining operations in the U.S. grew rapidly, from 4.5% in 2020 to 37.8%
by January 2022,making it theworld’s largest Bitcoinmining hub7. This
explosion of growth and new electricity consumption led to increased

electricity production and attendant emission of hazardous air pollu-
tants by fossil fuel power plants, including PM2.5 pollution and its
gaseous precursors.

Multiple studies have estimated greenhouse gas emissions from
Bitcoin mining, with estimates ranging from tens of millions to over
100millionmetric tons of CO2 per year

8,9. However, to our knowledge,
prior literature has not fully: (1) quantified the PM2.5 pollution attri-
butable to Bitcoin mining in the U.S.; (2) identified specific Bitcoin
mines andpower plants that are responsible for the additional ambient
PM2.5 pollution; and (3) pinpointed communities most affected by
Bitcoin mine-attributable PM2.5 pollution. A comprehensive under-
standing of these issues will establish accountability and inform
effective environmental and public health10.

In this study, we estimated how much additional PM2.5 pollution
was generated by the U.S. Bitcoin mining expansion that occurred
frommid-2022 tomid-2023. We also pinpointed the communities that
were exposed to it. Our analyses entailed the following steps.
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First, we built a dataset of the 34 largest U.S. Bitcoin mines, their
locations, and their power capacities during the study period. This
dataset was compiled from in-depth investigative reporting, financial
disclosures, land records, satellite imagery, and interviews. Further
details are in Supplementary Information. Second, we identified the
635powerplants across theU.S. that supplied electricity in response to
increased demand from each of the 34 mines during the study period.
Third, we estimated the resulting air pollution emissions from each
responding power plant that were attributable to Bitcoin mine elec-
tricity consumption. Fourth, we leveraged an atmospheric model to
track the dispersion of each power plant’s Bitcoinmine-attributable air
pollution emissions. Finally,wepinpointed communitiesmost affected
by Bitcoin mine-attributable PM2.5 pollution and quantified their
annual average exposure to mine-attributable PM2.5 pollution.

Results and discussion
Bitcoin mine characteristics
The study period for our analysis was August 2022 to July 2023. Our
sample included 34 Bitcoin mines in the U.S., with an aggregate
capacity of 3,910 megawatts (MW). The U.S. Energy Information
Administration (EIA) estimated that as of March 2023, the total power
capacity of all 137 Bitcoin mines in the U.S. was 3,000-4,000MW11.
Therefore, our sample of 34 Bitcoin mines represented the largest
power capacity mines in the U.S. (see Supplementary Information).
The mines in our sample ranged in capacity from 38MW (CleanSpark;
College Park, GA) to 450MW (Riot Digital; Rockdale, TX), and the
median mine capacity was 100MW (Table 1).

We estimated that these mines consumed 32.3 terawatt-hours
(TWh) of electricity during the study period after accounting for per-
iods when the mines were offline (see Supplementary Information for
details). The electricity usage of these 34mineswould equal the annual
demand of three to six million homes12.

TheBitcoinmining companyCoreScientific operatedmoremines
(seven mines with 814MW aggregate capacity) than any other com-
pany. Mines were located in 15 U.S. states (Fig. 1). Ten mines were in
Texas—more than in any other state—including three of the fourmines
in our sample with capacities of at least 200MW. New York and
Georgia hosted four mines each, while Pennsylvania and North Dakota
each hosted three. No other state had more than one mine.

Bitcoin mine-associated power plants
Each Bitcoin mine was located within a geographic area—a “balancing
authority region”—where electricity generation is constantly calibrated
to match electricity consumption13. There are 66 such regions in the
contiguous U.S., varying in size from thousands to millions of square
miles. When a Bitcoin mine begins operations or increases capacity, it
demands more electricity, and power plants within the mine’s balan-
cing authority region must respond to this increased “marginal”
demand by increasing the electricity it generates. Within each balan-
cing authority region, some power plants will generate proportio-
nately more electricity than others in response to increased demand.
The relative contribution of each power plant in response to increased
marginal demand is determined by several factors, including power
plant fuel type and capacity, andwhether renewable electricity sources
are available.

We estimated how much electricity the 635 individual power
plants generated in response to consumption by each of the 34 Bitcoin
mines during the study period using data from the EIA and the U.S.
Environmental Protection Agency (EPA) and regression models from
WattTime. See Supplementary Information for details. Fossil fuel
power plants generated 85% of the increased electricity demand from
Bitcoinmines, including 138 coal-fired and 497 natural gas-fired plants.
Bitcoin mines and the power plants that increased generation in
response to them were often separated by multiple states and hun-
dreds of miles (Fig. 1). For example, electricity consumed by the Atlas Ta
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Power Bitcoinmine inWilliston, ND, induced a large response from the
Jeffrey Energy Center coal-fired power plant located 722 linear miles
and three states away in St. Marys, KS (Table 1).

Bitcoin mine-attributable power plant emissions
After establishing the amount of electricity each power plant gener-
ated in response to each Bitcoin mine’s electricity use, we quantified
the PM2.5 and CO2 emissions from each plant that were attributable to
Bitcoin mining operations using data from the U.S. EPA (see Supple-
mentary Information). Table 1 reports Bitcoinmine-attributable power
plant PM2.5 emissions for the 10 mines in our sample responsible for
the largest amount of primary PM2.5 emissions. See Supplementary
Information for results from all 34 mines.

Mine electricity consumption, PM2.5 emissions, andCO2emissions
were only loosely correlated because the mix of power plants that
responded to each mine’s electricity demand was often different, and
some plants emitted more PM2.5 and CO2 per TWh than others. For
example, the Core Scientific mine in Calvert City, KY, was responsible
for more PM2.5 emissions than any other mine despite ranking 8th in
electricity consumption and 11th in attributable CO2 emissions
(Table 1). This discrepancy is partly because the Calvert City Core
Scientificmine induced a large response from the Shawnee Fossil Plant
in West Paducah, Kentucky, which is a coal-fired plant with fewer
pollution control than similar plants. The Shawnee Fossil Plant also
responded to electricity consumed by the BitDeer mine in Knoxville,
TN, which, despite ranking 24th in electricity consumption, was
responsible for the 4th highest PM2.5 emissions (Table 1).

Environmental impact of Bitcoin mine-attributable PM2.5 air
pollution
Power plants emit several air pollutants, including PM2.5 emitted
directly from their stacks (i.e., “primary” PM2.5), NOx, and SOx. Once
airborne, NOx and SOx can react in the atmosphere to form additional
(i.e., “secondary”) PM2.5 pollution

14. To assess ambient (i.e., primary and
secondary) PM2.5 air pollution across the U.S. attributable to Bitcoin

mines, we used the InMAP model, which is a validated, computation-
ally efficient, reduced complexity chemical transport model devel-
oped to trace air pollution from specific sources15. See the Methods
section below for details. InMAP predictions have been validated
against more complex chemical transport models as well as EPA
ground monitoring data. Model performance is within published
standards15. We aggregated all InMAP model estimates of total Bitcoin
mine-attributable ambient PM2.5 air pollution to the Census tract level,
mapped the resulting concentrations, and quantified the number of
people exposed to it.

Extensive prior research demonstrates that even small increases
in long-term PM2.5 air pollution increase the risk of premature mor-
tality and other adverse health outcomes16–18. We estimated that
46,211,621 Americans living in 27 states were exposed to measurable
(i.e., ≥0.01 µg/m3 on average) concentrations of Bitcoin mine-
attributable PM2.5 pollution from August 2022 through July 2023
(Fig. 2). This exposurewas in addition to PM2.5 pollution attributable to
all other sources. Americans exposed to Bitcoin mine-attributable
pollution lived in regions extending west to Montana, east to New
York, and south to Texas. Both rural and urban regions were affected,
including densely populated areas in or near New York City; Houston,
Austin, and San Antonio, Texas; New Orleans and Shreveport, Louisi-
ana; Little Rock, Arkansas; St. Louis, Missouri; Evansville, Indiana;
Nashville, Tennessee; Atlanta, Georgia; and Greensboro and Charlotte,
North Carolina.

We further estimated that 1,904,959 Americans across five states
were exposed to Bitcoin mine-attributable PM2.5 concentrations of at
least 0.10 µg/m3 on average across the study period. Most of these
residents lived in 1 of 4 “hotspots,” which we defined as contiguous
counties containing at least one Census tract with a total mine-
attributable PM2.5 concentration ≥0.10 µg/m3 (Fig. 2). These are (1) New
York City, (2) the Houston/Austin metropolitan area, (3) Northeast
Texas, and (4) areas along the Illinois/Kentucky border (Fig. 3).
Moreover, within each hotspot, Bitcoin mine-attributable PM2.5 con-
centrations in at least some tracts exceeded 0.50 µg/m3.

Fig. 1 | Bitcoin mines and the fossil fuel-fired power plants that generate elec-
tricity in response to them, August 2022-July 2023. 1 Electricity use in terawatt-
hours (TWh) for each of the 34 mines in our sample is based on each mine’s
confirmed capacity during the study period and the estimated percentage of time
during the study period that the mine operated at full capacity, i.e., its uptime.
These are lower-bound estimates. Some mines may have increased their capacity
(and thus their electricity use) beyond their confirmed capacity during the study
period. 2 Gray lines connect Bitcoin mines to the fossil fuel-fired power plants that
generate additional electricity in response to each mine’s additional electricity
consumption. They are based on the grid balancing authority in which eachmine is

located, and they also account for instances in which electricity is transferred
between balancing authorities. Renewable generating plants (e.g., solar, hydro,
wind) that respond to Bitcoinmine demand are not listed because they do not emit
PM2.5 pollution. Responding power plants are often hundreds ofmiles fromBitcoin
mines. 3 Each power plant’s mine-attributable electricity generation is the total
electricity in TWh that each power plant generated during the study period in
response to the electricity consumed by the Bitcoin mines. Maps were generated
using the ggplot2 (v3.5.1; DOI: 10.32615/CRAN.package.ggplot2) and tigris (v2.1;
DOI: 10.32614/CRAN.package.tigris) packages in R.
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While many residents in these hotspots lived near fossil fuel
power plants, the Bitcoin mines ultimately responsible for the addi-
tional mine-attributable PM2.5 pollution they inhaled were often hun-
dreds of miles away. New York City, for example, had two primary
areas exposed to high levels of mine-attributable air pollution (Sup-
plement Section 7). Residents in the first area, at the northern end of
Staten Island, were exposed to Bitcoin mine-attributable PM2.5 con-
centrations as high as0.67 ug/m3, which accounted for 8.7%of all PM2.5

air pollution over the area (Table 2). Most of this pollution came from
the Bayonne Energy Center gas-fired plant across the Kill van Kull in
New Jersey. However, the Bitcoin mines ultimately responsible for
these emissions were in upstate New York. For example, the Coinmint
mine in Massena, New York, located near New York’s border with
Canada and the 7th largest mine by capacity in our sample, was 100
linear miles away from Bayonne, New Jersey, and the pollution it was
responsible for in Staten Island, New York.

The second area of exceedingly high mine-attributable PM2.5

pollution in New York City was in Queens, near the natural gas-fired
Astoria Energy power plants. Here, the annual average of Bitcoinmine-
attributable PM2.5 concentration reached 0.59 µg/m3. This area also
includes the Rikers Island jail complex (0.46 ug/m3), which housed
approximately 6000 prisoners and employed thousands more staff
during the study period. Rikers Island has long been plagued by
flooding, extreme heat, and poor air quality. Bitcoin-attributable PM2.5

adds yet another environmental exposure associated with adverse
health outcomes.

We found two separate hotspots in Texas. The first stretched
between Austin and Houston, with the highest Bitcoin mine-
attributable PM2.5 concentrations near Houston’s southeast suburbs,
including Sugar Land and Rosenberg (0.52 µg/m3). We estimated that
709,924 people were exposed to at least 0.10 ug/m3 of additional
mine-attributable PM2.5 pollution in the Houston/Austin region, mak-
ing it the largesthotspot bypopulation. A large proportionof pollution
in this hotspot came from the coal- and gas-fired W.A. Parish Gen-
erating Station (Richmond, Texas) and the Sam Seymour Power Plant
(La Grange, Texas). While the Sam Seymour plant had SO2 scrubbers
installed on two of its three stacks to reduce emissions, theW.A. Parish
facility has no scrubbers on any of its four stacks, making its emissions
particularly toxic. The human impact of this toxicity is multiplied by
prevailing winds from the Gulf of Mexico, which blow toward the
northwest and cause emissions from W.A. Parish to drift over more
densely populated areas in this region19. Recent research estimated
that emissions from the W.A. Parish plant led to 3500 (95% CI:
3200–3900) premature deaths among older adults in the U.S. from
1999 to 2020, largely before Bitcoin mining in Texas began16. Two
years later, our analysis found that Bitcoin mining was responsible for
additional PM2.5— up to 0.5 µg/m3 — fromW.A. Parish that was inhaled
by residents in the Austin/Houston region. The Bitcoin mines ulti-
mately responsible for this increased PM2.5 air pollution were located
hundreds of miles west of Austin, including the Riot Digital mine in
Rockdale, Texas, theCipherMiningmine inOdessa, Texas, and theU.S.
Bitcoin mine in McCamey, Texas.

Fig. 2 | Additional ambient PM2.5 pollution attributable to Bitcoin mines,
August 2022-July 2023. 1 Mapped are annual average ambient PM2.5 concentra-
tions attributable to the 34Bitcoinmines inour sample. Thus, these are estimatesof
marginal (i.e., additional) pollution attributable to Bitcoin mine electricity use, not
estimates of total air pollution from all sources. Estimates are from the InMAP
model and account for (1) primary PM2.5, NOx, and SOx emissions from specific
power plants responding to increased demand for electricity induced by Bitcoin
mines; (2) power plant attributes (e.g., location, stack height); and (3)meteorology.

Polluted census tracts (i.e., tracts displayed in any color other than the pale-yellow
base color) are thosewith average annualmine-attributablePM2.5 concentrations of
at least 0.01μg/m3. Tracts inbright yellowmay exceed0.5μg/m3. See Table 2. 2 Blue
squares approximate the 4 mine-attributable PM2.5 “hotspots.” Hotspots are
empirically defined as contiguous counties containing at least one census tracts
with an ambient Bitcoin mine-attributable PM2.5 concentration ≥ 0.10μg/m3. See
Fig. 3. Maps were generated using the ggplot2 (v3.5.1; DOI: 10.32615/CRAN.pack-
age.ggplot2) and tigris (v2.1; DOI: 10.32614/CRAN.package.tigris) packages in R.
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These West Texas mines also increased electricity demand from
plants in other parts of Texas. Thus, they were also responsible for
increased mine-attributable PM2.5 pollution in the Northeast Texas
hotspot, where additional annual average PM2.5 concentrations
reached as high as0.86 µg/m3 near Tatum,Texas, andmade up 11.4%of
all PM2.5 air pollution in the area (Table 2). Areas around Tyler, Long-
view, and Texarkana, Texas, were also affected. A substantial propor-
tionof thismine-attributable PM2.5 pollutionwas emittedby theMartin
Lake power plant (Tatum, Texas) and the Sandy Creek Energy Station
(Riesel, Texas), both fueled by coal. However, compared to Sandy
Creek, the Martin Lake facility is more extensive and has no SO2

scrubbers installed. From 1999 to 2020, emissions from Martin Lake
were associated with 4100 (95% CI: 3700–4500) premature deaths
among older Americans16. In our analysis, Bitcoin mines again
increased the electricity demand—and thus hazardous air pollution
emissions—produced by these fossil fuel power plants.

Another coal-fired plant—the Shawnee Fossil Plant in West Padu-
cah, Kentucky—was responsible for a large proportion of Bitcoinmine-
attributable PM2.5 pollution in the fourth hotspot along the Illinois/
Kentucky border. This hotspot included the highest concentration of
mine-attributable PM2.5 pollution anywhere in the U.S.: 0.96 µg/m3 in
Metropolis, Illinois. We estimated that 13.1% of all PM2.5 air pollution
over parts of Metropolis, Illinois, during the study period was attri-
butable to Bitcoin mines (Table 2). The mines responsible for these
emissions were spread across at least three states and included the

BitDeer mine in Knoxville, Tennessee, the Core Scientific mine in Cal-
vert City, Kentucky, and the Core Scientific mine in Marble, North
Carolina.

The Core Scientific mine in Marble, North Carolina, illustrates the
importance of mine location and electricity utility provider in deter-
mining the location and amount of Bitcoin mine-attributable PM2.5

pollution. Electricity for the Core Scientific mine was supplied by two
separate utilities that were part of different balancing authorities.
Specifically, 35MW of the Marble mine’s 104-MW total capacity was
supplied by TVAMurphy Power, which was balanced by the Tennessee
Valley Authority (TVA). Marginal increases in electricity consumption
within the TVA induced additional generation at the Shawnee Fossil
Plant and thus increased mine-attributable PM2.5 pollution over the
Illinois/Kentucky border. However, the Marble mine’s other 69MW of
capacity were balanced by Duke Energy Carolinas and thus induced
electricity generation (and attendant pollution) at a different mix of
power plants elsewhere.

Within each hotspot, we also explored possible Bitcoin mine-
attributable PM2.5 exposure inequities. In many regions, socially mar-
ginalized groups experience higher air pollution exposure thanothers.
In this study, we investigated whether Census tracts with higher pro-
portions of non-White or low-income residents experienced higher
levels of PM2.5 exposure from Bitcoin mining than tracts with more
White or higher-income residents. We found no systemic exposure
inequities in any of the four hotspots (see Supplement Section 2).

Fig. 3 | Bitcoin mine-attributable PM2.5 pollution hotspots in detail, August
2022-July 2023. 1 Mapped are U.S. census tracts (2020 Census borders) within
hotspots. Hotspots are empirically defined as contiguous counties containing at
least one census tract with a total (i.e., primary and secondary) Bitcoin mine-
attributable PM2.5 concentration ≥0.10μg/m3. A fifth hotpot matching this defini-
tion near San Antonio, TX, is excluded because it is considerably smaller and its
Bitcoinmine-attributablePM2.5 concentrations are considerably lower than those in
the four hotspots detailed here. See Table 2 for specific concentrations in selected

hotspot census tracts along with a list of power plants and Bitcoin mines primarily
responsible for the Bitcoin mine-attributable PM2.5 pollution.

2 Estimates are from
InMAP. They represent the additional ambient PM2.5 pollution that is attributable to
Bitcoin mines. See Fig. 2. While the power plants emitting this pollution are often
near or within the hotspots, the Bitcoin mines ultimately responsible for the
emissions are typically hundreds of miles away. Maps were generated using the
ggplot2 (v3.5.1; DOI: 10.32615/CRAN.package.ggplot2) and tigris (v2.1; DOI:
10.32614/CRAN.package.tigris) packages in R.

Article https://doi.org/10.1038/s41467-025-58287-3

Nature Communications |         (2025) 16:2970 5

www.nature.com/naturecommunications


Ta
b
le

2
|S

el
ec

te
d
co

m
m
un

it
ie
s
w
it
h
th
e
h
ig
h
es

t
es

ti
m
at
ed

B
it
co

in
m
in
e-
at
tr
ib
ut
ab

le
an

n
ua

lP
M

2
.5
ex

p
o
su

re
an

d
th
e
B
it
co

in
m
in
es

an
d
p
o
w
er

p
la
n
ts

p
ri
m
ar
ily

re
sp

o
n
si
b
le

fo
r
it
,A

ug
us

t
20

22
-J
ul
y
20

23
,b

y
h
o
ts
p
o
ta

R
es

p
o
n
si
b
le

B
it
co

in
m
in
es

b
→

R
es

p
o
n
si
b
le

p
o
w
er

p
la
n
ts

c
→

S
el
ec

te
d
af
fe
ct
ed

co
m
m
un

it
ie
sd

M
in
es

p
ri
m
ar
ily

re
sp

on
si
b
le

fo
r
ea

ch
ho

t-
sp

ot
’s

B
it
co

in
m
in
e-
at
tr
ib
ut
ab

le
P
M

2
.5
p
ol
lu
-

ti
on

(n
am

e,
lo
ca

ti
on

)

P
la
nt
s
p
ri
m
ar
ily

re
sp

on
si
b
le

fo
r
ea

ch
ho

ts
p
ot
’s
B
it
co

in
m
in
e-

at
tr
ib
ut
ab

le
P
M

2
.5
p
ol
lu
ti
on

(n
am

e,
lo
ca

ti
on

,f
ue

l)
C
it
y
/
R
eg

io
n

C
ou

nt
y

C
en

su
s

Tr
ac

t
ID

Tr
ac

t
P
op

ul
at
io
n

In
cr
ea

se
d
P
M

2
.5
fr
om

B
it
co

in
m
in
es

(μ
g
/m

3
)

H
o
ts
p
o
t:
N
ew

Y
o
rk

C
it
y

C
oi
nm

in
t

M
as
se

na
,N

Y
B
ay

on
ne

En
er
g
y
C
en

te
r

B
ay

on
ne

,N
J

G
as

S
ta
te
n
Is
la
n
d
,N

Y
R
ic
hm

on
d

7
4
58

3
0
.6
7

77
19
6
9

0
.4
7

G
re
en

id
g
e

G
en

er
at
io
n

D
re
sd

en
,N

Y
8
1

4
6
38

0
.4
1

Te
ra
W
ul
f

S
om

er
se

t,
N
Y

→
A
st
or
ia

En
er
g
ye

Q
ue

en
s,

N
Y

G
as

→
Q
ue

en
s,

N
Y

Q
ue

en
s

12
3.
0
1

31
0
7

0
.5
9

D
ig
ih
os

t
N
or
th

To
na

w
an

d
a,

N
Y

11
1

29
4
9

0
.5
2

11
3

4
4
6
6

0
.5
2

R
ik
er
s
Is
la
n
d
,N

Y
B
ro
nx

1
~
6
0
0
0

f
0
.4
6

H
o
ts
p
o
t:
H
o
u
st
o
n
A
re
a

R
io
t
D
ig
ita

l
R
oc

kd
al
e,

TX
W
.A
.P

ar
is
h
G
en

er
at
in
g

S
ta
tio

n
R
ic
hm

on
d
,T

X
C
oa

l/
G
as

R
o
se

n
b
er
g
,T

X
Fo

rt
B
en

d
6
75

5.
0
2

17
6
81

0
.5
2

C
ip
he

r
M
in
in
g

O
d
es

sa
,T

X
→

S
am

S
ey

m
ou

rP
ow

er
Pl
an

t
La

G
ra
ng

e,
TX

C
oa

l
→

S
ug

ar
La

n
d
,T

X
6
75

5.
0
1

71
15

0
.5
2

U
S
B
itc

oi
n

M
cC

am
ey

,T
X

6
75

5.
0
3

72
6
9

0
.4
9

H
o
ts
p
o
t:
N
o
rt
h
ea

st
T
ex

as

R
io
t
D
ig
ita

l
R
oc

kd
al
e,

TX
M
ar
tin

La
ke

Po
w
er

Pl
an

t
Ta

tu
m
,T

X
C
oa

l
Lo

n
g
vi
ew

,T
X

G
re
g
g

10
5.
0
1

24
20

0
.5
3

C
ip
he

r
M
in
in
g

O
d
es

sa
,T

X
S
an

d
y
C
re
ek

En
er
g
y

S
ta
tio

n
R
ie
se

l,
TX

C
oa

l
10

5.
0
2

28
34

0
.4
6

U
S
B
itc

oi
n

M
cC

am
ey

,T
X

15
4
25

2
0
.4
5

B
itd

ee
r

R
oc

kd
al
e,

TX
→

→
H
ar
ri
so

n
20

6
.0
3

72
9
9

0
.4
5

R
ho

d
iu
m

En
te
rp
ri
se

s
Te

m
p
le
,T

X
20

6
.0
4

4
4
4
0

0
.4
4

C
or
e
S
ci
en

tifi
c

Pe
sc

os
,T

X
20

6
.0
6

59
74

0
.4
1

G
en

es
is
D
ig
ita

l
A
ss
et
s

Py
ot
e,

TX
Ta

tu
m
,T

X
R
us

k
9
50

1.
0
1

31
59

0
.8
6

C
or
e
S
ci
en

tifi
c

D
en

to
n,

TX
9
50

1.
0
2

25
32

0
.6
9

9
50

6
22

4
7

0
.4
6

Pa
no

la
9
50

2
29

4
7

0
.5
4

H
o
ts
p
o
t:
Il
li
n
o
is

/
K
en

tu
ck

y

C
or
e
S
ci
en

tifi
c

C
al
ve

rt
C
ity

,K
Y

S
ha

w
ne

e
Fo

ss
il
Pl
an

t
W
es

t
Pa

d
uc

ah
,K

Y
C
oa

l
M
et
ro
p
o
lis

,I
L

M
as
sa
c

9
70

2
36

79
0
.9
6

B
itd

ee
r

K
no

xv
ill
e,

TN
→

→
9
70

4
22

9
3

0
.7
1

C
or
e
S
ci
en

tifi
c
1g

M
ar
b
le
,N

C
9
70

1
4
6
4
4

0
.4
1

P
ad

uc
ah

,K
Y

M
cC

ra
ck

en
31
5.
0
1

25
24

0
.6
4

31
4
.0
1

16
8
0

0
.4
6

a H
ot
sp

ot
s
ar
e
em

p
ir
ic
al
ly

d
efi

ne
d
as

co
nt
ig
uo

us
co

un
tie

s
co

nt
ai
ni
ng

at
le
as
t
on

e
ce

ns
us

tr
ac

t
w
ith

a
to
ta
l(
i.e

.,
p
ri
m
ar
y
an

d
se

co
nd

ar
y)

B
itc

oi
n
m
in
e-
at
tr
ib
ut
ab

le
PM

2
.5
co

nc
en

tr
at
io
n
≥0

.1
0
μ
g
/m

3 .
S
ee

Fi
g
.3

.
b
“R

es
p
on

si
b
le

B
itc

oi
n
m
in
es

”
ar
e
th
os

e
w
ho

se
el
ec

tr
ic
ity

co
ns

um
p
tio

n
is
p
ri
m
ar
ily

re
sp

on
si
b
le

fo
r
th
e
B
itc

oi
n
m
in
e-
at
tr
ib
ut
ab

le
PM

2
.5
co

nc
en

tr
at
io
ns

in
ea

ch
ho

ts
p
ot

an
d
af
fe
ct
ed

co
m
m
un

ity
.

c A
m
on

g
p
la
nt
s
th
at

re
sp

on
d
to

th
e
m
in
es

’
m
ar
g
in
al

el
ec

tr
ic
ity

co
ns

um
p
tio

n,
“r
es

p
on

si
b
le

p
ow

er
p
la
nt
s”

ar
e
th
os

e
th
at

co
nt
ri
b
ut
e
th
e
la
rg
es

t
q
ua

nt
ity

of
m
in
e-
at
tr
ib
ut
ab

le
PM

2
.5
ov

er
th
e
af
fe
ct
ed

co
m
m
un

iti
es

.
d
S
el
ec

te
d
af
fe
ct
ed

co
m
m
un

iti
es

re
p
re
se

nt
ce

ns
us

tr
ac

ts
th
at

ar
e
m
os

ta
ff
ec

te
d
b
y
B
itc

oi
n
m
in
e-
at
tr
ib
ut
ab

le
PM

2
.5
p
ol
lu
tio

n.
C
om

m
un

iti
es

lis
te
d
in
th
is
ta
b
le
ar
e
th
e
th
re
e
ce

ns
us

tr
ac

ts
w
ith

in
ea

ch
ho

ts
p
ot

an
d
co

un
ty

w
ith

th
e
hi
g
he

st
B
itc

oi
n
m
in
e-
at
tr
ib
ut
ab

le
PM

2
.5

co
nc

en
tr
at
io
ns

ab
ov

e
0
.4

μ
g
/m

3 .
Th

is
ta
b
le

is
no

t
ex

ha
us

tiv
e,

an
d
m
an

y
co

un
tie

s
ha

ve
m
an

y
m
or
e
af
fe
ct
ed

ce
ns

us
tr
ac

ts
.

e A
st
or
ia

En
er
g
y
re
fe
rs

to
co

m
b
in
ed

p
ol
lu
tio

n
fr
om

b
ot
h
A
st
or
ia

Ia
nd

A
st
or
ia

II
g
en

er
at
in
g
p
la
nt
s.

f R
ik
er
s
Is
la
nd

is
a
ja
il
co

m
p
le
x
in

N
ew

Yo
rk

C
ity

,w
ho

se
in
m
at
e
p
op

ul
at
io
n
fl
uc

tu
at
ed

b
et
w
ee

n
5,
70

8
on

A
ug

us
t
1,
20

22
,t
o
6
,1
82

on
A
ug

us
t
1,
20

23
.E

st
im

at
ed

p
op

ul
at
io
n
d
oe

s
no

t
in
cl
ud

e
ja
il
st
af
f2

9 .
g
El
ec

tr
ic
ity

fo
r
C
or
e
S
ci
en

tifi
c’
s
B
itc

oi
n
m
in
e
in

M
ar
b
le
,N

C
,w

as
su

p
p
lie

d
b
y
tw

o
se

p
ar
at
e
ut
ili
tie

s.
O
nl
y
th
e
p
or
tio

n
su

p
p
lie

d
b
y
TV

A
-M

ur
p
hy

Po
w
er

co
nt
ri
b
ut
ed

to
PM

2
.5
p
ol
lu
tio

n
ov

er
th
is
ho

ts
p
ot
.

Article https://doi.org/10.1038/s41467-025-58287-3

Nature Communications |         (2025) 16:2970 6

www.nature.com/naturecommunications


Sensitivity analyses
Our primary results rely on WattTime models to identify each power
plant’s response to Bitcoin-induced marginal increases in electricity
demand (Supplement Section4).WattTimemodels account for several
factors known to influence plant behavior and may outperform more
simplistic models of grid response. Nevertheless, we performed two
sensitivity analyses using alternative methods to estimate each power
plant’s response to ensure our results are statistically robust. These
sensitivity analyses suggest our primary, WattTime-based results are
robust and appropriately conservative. See Supplement Sections 3.1 &
3.2. In a separate sensitivity analysis, we also found that the results
reported above are consistent with those if we assumed that Bitcoin
mines strategically manipulated their uptime to operate only during
periods when electricity generation produced the lowest levels of
emissions (Supplement Section 3.3).

Our analyses have some limitations. The InMAP model is
computationally efficient, partly because it predicts concentrations
at a finer spatial scale in more densely populated areas with higher
pollutant concentrations. However, predictions in rural areas with
lower pollutant concentrations may be less precise. Relatedly,
InMAP outputmay generally underestimate concentrations from fossil
fuel power plants across the United States, but they may somewhat
overestimate predictions on the Gulf Coast of Texas and in
Northeast Texas.

Policy Implications
Bitcoin mines, which are largely unregulated in the U.S., are an emer-
ging and significant challenge to U.S. environmental health and air
pollution regulation for two reasons. First, mining Bitcoin requires
enormous amounts of electricity9. Bitcoin mines induce electricity
production mainly from fossil fuel power plants, including from some
of the country’s dirtiest coal-fired plants. This increased demand hin-
ders policy efforts to retire fossil fuel power plants and reduce air
pollutant emissions. Furthermore, additional Bitcoinmine-attributable
PM2.5 emissions could slow efforts to attain the new National Ambient
Air Quality Standard for PM2.5 of 9 µg/m3 recently announced in
early 20242.

Second, air pollution regulatory efforts are further complicated
because Bitcoin mines in one state often induce air pollution in other
states, leaving residents in affected states with no state-based political
power to reduce the Bitcoin mine-attributable air pollution they
breathe. For example, residents in Metropolis, Illinois, breathe high
concentrations of Bitcoin mine-attributable PM2.5 air pollution
released fromapower plant in Kentucky that supplies a Bitcoinmine in
North Carolina. Yet, the Illinois state government has no jurisdiction to
regulate activities in either Kentucky or North Carolina. As a result,
federal regulation is required to address the impact of cross-state air
pollution from the Bitcoinmining boom.One possible policy response
may be for the U.S. EPA to promulgate a “Good Neighbor” rule for
PM2.5 pollution that would require upwind states to control emissions
from power plants more aggressively. A similar rule for ozone pre-
cursors has been proposed, but shifting interpretations of relevant law
and EPA authority under the Clean Air Act may subvert these efforts.
Alternative policy responses could encourage the responsible siting of
Bitcoin mines to minimize negative environmental externalities and
health burdens they impose.

Future Research
While this paper provides a foundation for understanding Bitcoin
mining’s environmental impact, our estimates of the present impact of
Bitcoin mining operations in the U.S. are very conservative for several
reasons. First, our sample underrepresents the total number of U.S.
Bitcoin mines. Second, the mines we examined have likely increased
their power usage since the end of our study period in July 2023. For
example, the BitDeermine in Rockdale, Texas, is alreadymore than 2.5

times larger than it was during the study period, and the global Bitcoin
network hash rate (a measure of the computational power used to
mine and process transactions on a cryptocurrency network)
increased by 105% over the course of 202320. Furthermore, the state of
Texas has seen a dramatic rise in its share of the U.S. Bitcoin mining
hash rate, growing from 8.43% at the end of 2021 to 28.50% as of July
2023. This indicates a growing demand for Bitcoin mining and is
attributed to Texas’ pro-crypto policy environment21.

If all mines met their proposed capacity increase (see Supple-
mentary Information), the total capacity would increase from
3910MW to 7945MW, representing a 103% increase. To account for
this rise in the energy demand, future research should expand the
dataset to include more mines and update power capacities in this
rapidly evolving industry.

Finally, the increase in toxic PM2.5 air pollution induced by Bitcoin
mining will negatively impact human health. PM2.5 increasesmortality,
morbidity, and hospitalization risk. Air pollution from coal-fired power
plants (coal PM2.5) is particularly toxic, with a mortality risk 2.1 times
greater than that of PM2.5 from other sources. Thus, a holistic assess-
ment of the impact of Bitcoin mines should consider their health and
environmental impact.

Methods
Bitcoin data
Data on the Bitcoin mining facilities was collected from The New York
Times22. The New York Times identified the 34 largest Bitcoin miners in
the U.S. as of March 2023, defined as mines with capacities near or
exceeding 40 megawatts. Data collected included Bitcoin miners’
proposed power capacity, their actual power capacity, their uptime—
i.e., the percentage of the total power capacity at which theminers are
assumed to have worked in the year under study—the exact locations
(latitude and longitude), and balancing authorities from where they
source electricity. The New York Times investigation pinpointed major
Bitcoinmines by scrutinizing public statements, newsarticles,financial
disclosures, and by conducting interviews with mine operators. Sub-
sequently, satellite imagery and land records were employed to
ascertain the precise location of eachoperation and its connection to a
specific part of the U.S. electric grid. After completing its investigation,
The New York Times presented its findings to each Bitcoin mining
operation in order to allow the operations to comment and make
corrections.

Power plants data
Data on power plants was retrieved from WattTime, the U.S. EPA, and
the EIA.WattTime—an environmental nonprofit tech that specializes in
measuring and monitoring greenhouse gas emissions—harnessed and
leveraged data from a variety of sources, including the U.S. EPA, EIA,
grid operators, and a machine learning algorithm, to provide, for each
balancing authority grid region, power plants’ exact locations, their
marginal contribution to supply a marginal MWh of demand (i.e., the
“marginal operating emissions rate,” or MOER), at daily level, in their
balancing authority grid region of competence, and their amount of
CO2, NOX, SO2, and PM2.5 emissions per MWh produced (see Supple-
mentary Information for more details)23. We used the U.S. EPA’s 2018
eGRID dataset to retrieve information on plant-specific emissions,
which is the most recently available emissions data, while we used the
2022 eGRIDdataset to obtain information regarding fuel types used by
each power plant24.

Characteristics of affected communities
We used demographic data from the American Community Survey
5-year estimates (ACS-5) at the Census tract level25. The ACS covers a
broad range of variables related to the U.S. population’s social, eco-
nomic, demographic, and housing characteristics.We used ACS-5 data
from 2022 for our socio-demographic analyses26.
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Quantifying Bitcoin-attributable emissions
This study estimates the additional exposure to PM2.5 due to the
additional energy demand from Bitcoin data mining facilities. We
tracked each power plants’ contributions to ambient PM2.5 and aver-
aged concentrations at the census tract level to study the exposed
populations’demographics.We retrieved fromTheNewYork Times the
location and power capacity of each Bitcoin miner and quantified
Bitcoin miner-attributable emissions as follows.

We first estimate the energy demand for year y bymultiplying the
power capacity (MW) of each Bitcoin miner i, by their uptime factor,
and finally by the number of hours in a year (8760).

Miner Energy Demandði, yÞ= Power Capacityði, yÞ � Uptimeði, yÞ � 8760: ð1Þ

We assume that the energy demand for each miner is constant
throughout the year.

Second, we link each Bitcoin miner to its respective Balancing
Authority. This is done by cross-checking Bitcoin mining facilities’
locations, Balancing Authorities’ borders (polygons), and media and
news documents assigning specific Bitcoinminers’ energy demands to
specific utilities or balancing authorities.

To find each power plant’s load increase due to the Bitcoin
miners’ energy demand, we divide the yearly energy demand of
eachminer among the supplyingpowerplantswithin the grid regionof
the miner, according to their respective MOERs, described earlier.
Given miner i, year y, power plant j, and the balancing authority B,
we have

Power Plant Loadði, y, j, BÞ=Miner Energy Demandði, yÞ �MOERðy, j,BÞ ð2Þ

Where: j 2 B, that is, power plant jbelongs to the balancing authorityB;
MOERði, y,BÞ represents the percentage contribution of power plant i
to the production of energy in a specific balancing authorityB in year y,
such that the sum of all power plants’ contributions within a balancing
authority B equals one,

XNb

j = 1

MOERðj,BÞ= 1 ð3Þ

where NB is the number of power plants in the balancing authority B.
These computations yield the proportion of megawatt-hours

(MWh) supplied by each power plant to each Bitcoin facility.
Third, wemultiply the resultingmarginalMWh loadborne by each

power plant due to the miner’s operations by the power plant’s emis-
sions perMWh coefficient. This coefficient varies for each power plant
depending on its fuel type and efficiency (e.g., power plants that rely
on coal typically have higher primary PM2.5 emissions per MWh than
gas plants).

Power Plant Emissionsði, y, j, BÞ=Power Plant Loadði, y, j, BÞ�
Emission per MWhðy, j,BÞ

ð4Þ

Emissions coefficients are developed separately for each emitted
pollutant (CO2, NOx, SO2, and PM2.5) and are unique to each
power plant.

In summary, this entire data pipeline identifies the annual emis-
sions that each plant produces due to the Bitcoin miner’s marginal
electricity demand. Sensitivity analyses to our estimates—to assess the
robustness of ourmodel—have been produced. Results are reported in
the Supplementary Information.

Tracking air pollution dispersion and atmospheric
transformation
Toquantify the dispersion of PM2.5 emissions produced by each power
plant due to Bitcoin mining operations, we employed the Intervention
Model for Air Pollution (InMAP), a well-validated, reduced-complexity
model developed for the U.S. that estimates annual average ambient
PM2.5 concentrations from specific point sources15. More specifically,
the InMAPmodel estimates annual exposure to ambient PM2.5, using a
variable spatial resolution depending on the population density and
pollutant concentration, ranging from squares with sides as short as
1 km in urban, heavily polluted areas to larger ones in rural, less
polluted areas.

InMAP is a reduced complexity model that approximates scien-
tists’ full understanding of atmospheric transport, dispersion, and
chemistry using a simpler algorithm than full-scale chemical transport
models. We chose this model because the computational demand of
full-scale models would make infeasible calculations of specific power
plants’ contributions to ambient PM2.5. Evaluations have shown InMAP
has good performance in predicting changes in PM2.5, sulfate, and
secondary organic aerosol concentrations compared with other air
quality models27.

InMAP takes as inputs the location (latitude and longitude) of
each point emission source (i.e., the power plants) and the quantities
of emissions (PM2.5, SOx, and NOx). We used our SO2 estimates as a
proxy for SOx—SO2 is a sufficient indicator for the larger group of
gaseous sulfur oxides, especially in coal power plants28. The output
grid with average PM2.5 concentrations is then overlaid onto the U.S.
Census tracts. Grid cells’ PM2.5 exposure values are transposed to
Census tract exposure values by averaging the values of the grid cells
overlapping each Census tract. Grid cells overlapping multiple tracts
have their PM2.5 concentrations equally divided between the tracts.

Our input dataset for InMAP is structured as follows: each row
represents a power plant, identified by its latitude and longitude,
whichmark the geographic locationwhere emissions occur. Alongside
these coordinates, we include data on PM2.5 and SO2 emissions pro-
duced specifically to meet the electricity demands of Bitcoin miners.
This ensures that the simulation exclusively tracks pollution attribu-
table to Bitcoinmining activities. The simulation spans a full solar year
of our study, from August 1, 2022, through July 31, 2023. We specified
our InMAP models to output gridded estimates with a spatial resolu-
tion that varies based on population density and pollutant con-
centration: grid cell edge lengths ranged from 1 km in the densely
populated areas with high Bitcoin mine-attributable pollutant con-
centrations (e.g., New York City) to 290 km in sparsely populated
regions with low Bitcoin mine-attributable pollutant concentrations
(e.g., desert regions inwestern states). Themeteorological data used is
the default dataset provided by InMAP, i.e., the preprocessed data was
derived from a WRF-Chem run reflecting 2005 meteorological and
chemical data.

With Census tract exposures, we identified and classified all the
contiguous counties as hotspots containing at least one census tract
with an ambient Bitcoin mine-attributable PM2.5 concentration
≥0.1μg/m3.

Demographic impact
To investigate potential income and racial and ethnic exposure dis-
parities within each hotspot, we created separate scatter plots of tract-
level Bitcoin-attributable PM2.5 concentrations against (1) the percen-
tage of non-White residents and (2) the median household income for
every Census tract of each hotspot.

To make results comparable across different hotspots, we con-
verted the demographic values (i.e., for each tract, the percentage of
non-White residents and the median household income) to percentile
ranks within each hotspot, with ranked bounded as >0% and <100%.
For example, the tracts in theNortheast Texas hotspotwith the highest

Article https://doi.org/10.1038/s41467-025-58287-3

Nature Communications |         (2025) 16:2970 8

www.nature.com/naturecommunications


median incomes were designated as the 99th percentile or higher,
while the tract with a median income at the median for the Northeast
Texas hotspot was designated as the 50th percentile. Resulting scatter
plots illustrate whether lower income tracts (or tracts with pro-
portionately more non-White residents) experienced higher levels of
Bitcoin mine-attributable air pollution.

Data availability
Data required to replicatemost analyses are available at https://github.
com/NSAPH-Projects/bitcoin_mining_env_burden. WattTime data is
proprietary and may be available upon request from WattTime.

Code availability
Code for all analyses presented here is available at https://github.com/
NSAPH-Projects/bitcoin_mining_env_burden (https://doi.org/10.5281/
zenodo.14833137).
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